
Breaking AI Code Editors
Known Vulnerabilities to a Search-Driven RCE in Claude Code

Agenda

● The AI coding agent explosion
● Assistant vs “agent” threat model
● Findings (auto-approval escape, DoS, tool call RCE)
● What else? - Known vulnerability classes
● Mitigations and policy

Not in scope:

● CVEs we’re presenting at RSAC
● Clawdbot stuff

Why AI coding agents matter

● Massive adoption
● Useful for task completion
● Perceived productivity

Threat Model (September)

Setup: CLI-based or IDE extension; npm
distributed; obfuscated JS

Functionality:
Natural language prompt → code
suggestion (maybe adding
dependencies) → command generation
→ execution

Controls:
● Checks with user for approval

before certain commands are
run (e.g., file edits, sudo-level,
git)

● However….. auto-approval, allow
lists, YOLO mode exists

● Some checks when pulling in
dependencies

Threat Model: How things have changed..
Since September 2025

Functionality:
● Tool use, web searches, skills, better planning & reasoning
● Agent selects tools autonomously (shell, git, npm, search, editor APIs)
● Dependencies resolved and installed by the agent
● Tool output is reused as planning input (e.g, web search)

Controls
● Binary allowlists (but not based on semantic

intent)
● Can inherit isolation from host (e.g., Cursor

can inherit VSCode workspace permissions)
● Defer to standard package managers and

explicitly runs install commands
● Parser or execution failures often terminate

the agent process

Our Findings

Three classes of
vulnerabilities in
Claude Code:
1. Bypassing user

approval
2. Denial of Service

via malformed
input

3. Web search RCE
(New)

1

2

3

Finding #1 - Auto approval bypass

Why the bypass works
● Auto-approved binaries list is too permissive
● Certain flags enable arbitrary command

execution without explicit approval
● Example: find . -exec sh -c "<command>" \;

What is Auto-Approval?

● Skip confirmation for
common safe
commands.

● Designed to
streamline repetitive
tasks in CI/dev

● Works by maintaining
a list of pre-approved
binaries to run
automatically.

Finding #2 - DoS via malformed input

What it is was
● A denial-of-service (DoS) in

command parser
● Malformed environment

variable tokens (${...}) cause
an unhandled exception

● Effect: a single bad input
makes the agent exit and
stop responding.

http://www.youtube.com/watch?v=62KI5x1P_3U

Technical Analysis
After some approximated deobfuscation

Why it worked
● Malformed input like ${PATH }
● The parser either fails to find a } at the expected

offset or accepts the trailing space into
varName.

● That leads to the throw new Error("Bad
substitution") path.

● Because that throw is uncaught, the process
exits

What happened
● Agent got a string that looked like code (e.g.

echo ${PATH }).
● Nested token parser tried to expand ${...} and hit

a malformed token.
● Parser threw Bad substitution and no caller

caught it.
● Unhandled exception crashed the process

Finding #3 - Web search RCE

How tool-calling works

Plan → Tool Call → Parse Output →
Execute → Loop

● Built in Anthropic tool
(web_search or web_fetch
tool)

● Agent issues search query
● External search API returns

text
● Result injected into agent

context
● Output reused

What’s happening
● Search returns free-form text
● Text is injected into context without validation
● Agent parses text for commands and examples
● Parsed content influences shell execution

Search tool output treated as trusted, unvalidated input

Finding #3 - How search tool calls can be poisoned

How web search can be manipulated
● Attacker controls public web content
● Search ranks attacker content highly
● Agent treats results as authoritative
● Output reused for planning and

execution

Additional RCE insertion vectors
● Publish “docs-looking” pages that

rank high in search results
● Embed copy-pasteable commands

(npm + bash) inside code blocks
● Claude Code ingests search

snippets as context, then reuse them
(indirect injection)

Evolution of Claude Code Security

Key developments since September:

● /security-review used across PRs
and CI to flag common vuln classes
and risky diffs

● Known vulnerable packages and
insecure patterns flagged: install
decisions remain agent-driven

● System cards now treat coding
agents as a distinct risk class

● Faster response to reported issues:
Bug bounty reports and disclosures
feed incremental mitigations and
guidance updates

Execution security model unchanged:

Controls remain binary allowlists, optional
auto-approval, and inherited OS permissions

Towards a taxonomy for AI Code Editor Security
There’s an OWASP Top 10 for that…sort of..

Class Example Disclosure Source OWASP Agentic Top 10 Prompt Kill Chain
Phase

Prompt Injection README
influence OWASP, academia ASI01 – Agent Goal Hijack Injection

Tool Output
Poisoning

Search →
command Microsoft, Google ASI02 – Tool Misuse & Exploitation Execution

Execution Gating
Failure find -exec Kodem, CI/CD

research
ASI05 – Unexpected Code

Execution (RCE) Execution

Supply Chain Auto npm
install npm incidents ASI04 – Agentic Supply Chain

Vulnerabilities Persistence

Sandbox Gaps Broad FS
access Gemini CLI notes ASI05 – Unexpected Code

Execution (RCE) Execution

Denial of Service ${PATH} crash Kodem disclosure ASI08 – Cascading Failures Impact / Disruption

We reveal 13 more at RSAC 2026…

