
Andrew Stiefel
Head of Product Marketing

Enter to win a

81%
of professional devs are

using AI tools in the SDLC1

62%
of AI-generated code

has issues3

40%
of code on GitHub
is AI-generated2

Sources: 1. StackOverflow Survey (2025) 2. Morgan Stanley TMT Conference (Microsoft) 3. Can LLMs Generate Correct and Secure Backends? (Mark Vero et al)

The reality of

It’s going

We let the AI interns deploy to prod?

SQL DB
No Auth

SAST Pass
“Clear to Deploy” App Shipped

Dev
Prompt

AI Code

No Validation
Rate Limits

Code Review
Rubber Stamped

AI Fuzzing
End Points

Attacker
“Hell Yeah”

Hey AI, hook up to the DB
and pull some data on
recent users. Add a
leaderboard

VHELL YEAH!
DATA,DATA

EVERYWHERE

ADMIN

“We propose that “software engineering” encompasses not just
the act of writing code, but all of the tools and processes an
organization uses to build and maintain that code over time.

What practices can a software organization introduce that will
best keep its code valuable over the long term?

How can engineers make a codebase more sustainable and the
software engineering discipline itself more rigorous?”

“Software engineering at Google”

https://abseil.io/resources/swe-book/html/pr01.html#programming_over_time

65
Critical CVEs

…and the app didnʼt work.

1,292  1,600
Dependencies

10
Minutes

700
SAST issues

“Build an application
that can track a board
game collection. The
app should include the
game name, number of
players, length of the
game and some
generic description.
Use a python backend
based on flask and
build a react app for
the frontend.”

✦ Prompt

We vibe coded and

✦ Same prompt can produce
different results
By design, LLMs never produce deterministic
output

✦ Model dependency
Different models will perform differently,
your results will vary

✦ Free from IF-THEN
Non-determinism allows for creativity and
reasoning

Non-determinism
is good and bad

gpt-4.1

Created a simple app with 2 backend dependencies

claude-3.5-sonnet

Created a more complex app with 5 backend dependencies

LLMs are
Same prompts, different outcomes

“Create a TODO list app with a React frontend and Python backend. The app must support creating Todo items with an expiration date
and have the ability to delete items from the Todo list. Please do not create a readme and just do the code.”

Expect
the unexpected

✦ Small features can have
a huge impact
Simple AI suggestions can inflate your
dependency tree

✦ Vulnerability multiplication
Each dependency can introduce new risks

✦ Risks beyond CWEs and CVEs
AI can make architectural changes that impact
your security posture

OAuth 2.0 implementation modified to simplify login flow…
removed the removed the state parameter from the
authorization request and callback validation.

✅ Uses valid syntax
🤖 SAST struggles with negative logic
🧠 Reviewer must understand app context

Sample risks your SAST

removed

added

✦ Prompt = design document
Build security into “paved path” prompts

✦ Prime for security
Tell it up front to design securely

✦ Take advantage of reasoning
Use the assistant to refine the app to improve
security

Start with secure
prompts

PROMPTS

Prompt 1 (basic)

“Write a Python script that takes a hostname
as input and pings it 4 times.”

AI-generated code:

Prompt 2 (security-conscious)

“Write a secure Python script that takes a hostname as input
and pings it 4 times. Validate the input to avoid security issues.”

AI-generated code:

import os

host = input("Enter hostname: ")
os.system(f"ping -c 4 {host}")

import subprocess
import shlex

host = input("Enter hostname: ")
Simple validation: allow only
alphanumeric and dots in hostname
if not host.replace('.', '').isalnum():
 raise ValueError("Invalid hostname
format.")

Use subprocess with a list to avoid shell
injection
subprocess.run(["ping", "-c", "4", host],
check=True)

✦ Learn different prompt techniques

✦ Copy templates to use in your daily work

✦ Experiment with examples

✦ Use rules files to drive
development
Rules files can drive behaviors

✦ Use “ignore rule” to protect
sensitive data
YMMV with different models

✦ Test-driven development
Automated checks (which you can ask the
model to write) can help catch issues

Implement security
standards

Organization-specific preference

This rule tells the AI code assistant
what to do whenever there is a user input.

Handle user input sanitization

- Use the internal function sanitizeInputSafe() for all
user input sanitization. Example:

/* js */

// Instead of manually cleaning user input:
// const input = userInput.replace(/[^\w\s]/gi, '');
// Use the organization's approved sanitizer

const cleanInput = sanitizeInputSafe(userInput);

```



✦ Out of date code 
and data (and CVE data)
Models are trained on code that’s 1+ year old, 
but new CVEs are disclosed every day

✦ Fresh intelligence
MCP servers are useful to inject fresh security 
intelligence into the development workflow

✦ Models can fix issues
With enough guidance models can be 
very good at fixing issues

Get real-time 
security signal



Beware the

Why Cursor didn’t 
choose the latest 

versions…?

April 2024

March 2024

Because gpt-4.1’s 
training data cutoff 

was June 2024!



A component that facilitates communication between
AI models and various data sources and services.

What is an

⛃



How MCP 
servers 
provide

It’s all about the rules





Start with 
secure

prompts

Implement 
security 

standards

Add 
security
signal

Help devs  AI code assistants



Andrew

Connect with me to get 
deck and resources!


