

Breaking and Securing Claude Code:
Misconfiguration & DoS Vulnerabilities in AI

Code Editors

Why AI coding tools matters

Massive adoption of AI
coding tools (Claude Code,

Cursor, Gemini CLI, etc.)

Demonstrably useful for task
completion and “perceived

productivity”

Threat Model

Functionality:
Natural language prompt → code
suggestion (maybe adding
dependencies) → command
generation → execution

Controls:
● Checks with user for

approval before certain
commands are run (e.g., file
edits, sudo-level, git)

● However….. auto-approval,
allow lists, YOLO mode exists

● Some checks when pulling in
dependencies

Our Findings

Two classes of
vulnerabilities in
Claude Code:
1. Bypassing user

approval
2. Denial of Service

via malformed
input

3. RCE (coming
soon)

1

2

Finding # 1 - Approval Bypass

Why the bypass works
● Auto-approved binaries list is too permissive
● Certain flags enable arbitrary command

execution without explicit approval
● Example: find . -exec sh -c "<command>" \;

What is Auto-Approval?

● Skip confirmation for
common safe
commands.

● Designed to
streamline repetitive
tasks in CI/dev

● Works by maintaining
a list of pre-approved
binaries to run
automatically.

Finding # 2 - DoS via malformed input

What it is was
● A denial-of-service (DoS)

in command parser
● Malformed environment

variable tokens (${...})
cause an unhandled
exception

● Effect: a single bad input
makes the agent exit and
stop responding.

http://www.youtube.com/watch?v=62KI5x1P_3U

Why it worked
● Malformed input like ${PATH }
● The parser either fails to find a } at the expected

offset or accepts the trailing space into
varName.

● That leads to the throw new Error("Bad
substitution") path.

● Because that throw is uncaught, the process
exits

After some approximated deobfuscation
Technical Analysis

What happened
● Agent got a string that looked like code (e.g.

echo ${PATH }).
● Nested token parser tried to expand ${...} and hit

a malformed token.
● Parser threw Bad substitution and no caller

caught it.
● Unhandled exception crashed the process

Root causes, possible mitigations
Root Cause Specific Examples Mitigations

Over-trust in
whitelists

find -exec launches arbitrary shell;
python -c, sh -c via "approved"
binaries

● Disable auto-approval for shells;
● Command allow‑list with safe flags only;
● Block patterns: -exec, -eval, -e, backticks, subshell $();
● Require human approval for any process‑spawning

Lack of env var
validation

${PATH } (trailing space) → bad
substitution

● Validate names with ^[A-Za-z_][A-Za-z0-9_]*$;
● Reject/escape malformed tokens;
● Treat ${...} from prompts as data, not code

Weak error
handling

Agent exits on first parse error;
unhandled non‑zero status

● Wrap exec in supervisor with timeouts/retries;
● Set -o pipefail and trap errors; degrade gracefully

(skip step, log, continue)

Blind
dependency

installs

Auto npm install of trojanized
package; editor‑initiated installs

Require manual review for AI‑suggested deps; enforce
lockfiles;
enable npm audit/advisory checks in CI; allow only
signed/verified sources; block installs at runtime without
approval

Evolution of Claude Code Security

Key developments since:

● /security-review: Terminal
command / GitHub Action to scan
code for vulnerabilities pre‑commit
Dependency checks: Included in
reviews (flags known vulnerable
packages & insecure patterns)

● Safety disclosures: System cards
include agentic safety evaluations
for coding (Opus 4 / 4.1)

● Threat intel: Ongoing reports on
misuse & mitigations

What about the others?

Cursor (Anysphere):
● Malicious VSCode extension in Cursor IDE stole ~$500K crypto (Open VSX

supply chain).
● Workspace Trust off allows repos with tasks.json to auto‑execute code.

Google – Gemini CLI:
● Prompt injection in README/context files enabled silent command execution

+ data exfiltration
● Weak sandbox/whitelist allowed arbitrary commands until patched

OpenAI – Codex:
● Early versions executed shell commands without approval (e.g. curl | sh)
● Sandbox/permission inconsistencies on Windows still allow bypass

Thank
You

