
The End of Mobile
Security Complacency:
DMA, Antitrust, and
the Rise of Real API
Protection

Ted Miracco, George McGregor
Approov

OWASP Los Angeles
June 25 2025

2

Open App Markets Act
Blackburn, Blumenthal, Lee, Klobuchar, and Durbin Introduce
Bipartisan Antitrust Bill to Promote App Store Competition

WASHINGTON, D.C. – June 24 2025, U.S. Senators Marsha Blackburn
(R-Tenn.), Richard Blumenthal (D-Conn.), Mike Lee (R-Utah), Amy Klobuchar
(D-Minn.), and Dick Durbin (D-Ill.) introduced the bipartisan Open App
Markets Act, which would set fair, clear, and enforceable rules to promote
competition and strengthen consumer protections within the app market.
Google and Apple currently have gatekeeper control of the two dominant
mobile operating systems and their app stores that allow them to exclusively
dictate the terms of the app market, inhibiting competition and restricting
consumer choice.

Breaking News!

https://www.blackburn.senate.gov/2025/6/technology/blackburn-blumenthal-lee-klobuchar-and-durbin-introduce-bipartisan-antitrust-bill-to-promote-app-store-competition
https://www.blackburn.senate.gov/2025/6/technology/blackburn-blumenthal-lee-klobuchar-and-durbin-introduce-bipartisan-antitrust-bill-to-promote-app-store-competition

 3

The Mobile Paradox

● The Reality: Mobile app traffic is a
significant and rapidly growing piece of
the global digital ecosystem, eclipsing
traditional web traffic in many sectors.

● The Problem: Mobile security receives
significantly less dedicated attention
and budget from CISOs compared to
web security.

● This creates a dangerous blind spot
where organizations are most exposed.

 4

The Mobile Issue

The threat is real: Kahoot!, Starbucks, T-Mobile, ...and VW…

Common Mobile to API Attacks

● Repackaged apps bypass
restrictions

● Emulators to scale attacks
● Man-in-the -Middle to extract

API keys and secrets
● Automation tools for

script-based abuse
● Credential Stuffing via the API

5

The Great App Store Myth: A False Sense of Security

● A Walled Garden with Open Gates
● Consumers (and many developers) depend on the Apple App Store and

Google Play, but this trust is misplaced.
● Cursory Reviews: The review process is notoriously brief and automated,

primarily focused on policy compliance, not deep security analysis.
● The Real Target is Unseen: Even a thorough review can't secure what it

doesn't control: the backend APIs.
● The Crown Jewels: These APIs protect the truly valuable data:

○ Health information (HIPAA)
○ Financial data & cryptocurrency
○ PII, rewards points, vehicle access, and more.

● The app on the phone is just the key; the API is the lock on the vault.

6

Apple Testimony at DMA (2024) vs.
ruling in US Court in 2025

Kyle Andeer, VP Products and
Regulatory Law, Apple

“In stark contrast to Apple’s initial
in-court testimony,
contemporaneous business
documents reveal that Apple knew
exactly what it was doing and at
every turn chose the most
anti-competitive option,” Rogers
wrote. “To hide the truth,
Vice-President of Finance, Alex
Roman, outright lied under oath.”

https://docs.google.com/file/d/1z8a0LwLa80j4AcpRY6eF4uXGjJ6nYGxQ/preview

7

PRESENTATION TITLE

The EU Digital Markets Act (DMA)
The European Union's Digital Markets Act (DMA) aims to make digital markets in the EU fairer and more
contestable. It does this by establishing rules for large online platforms, referred to as "gatekeepers," to
prevent them from abusing their market power.

Designates 6 “gatekeepers” and 22 core platform services

Explicitly requires Apple (AppStore) and Google (Play) to enable:

● Alternate app stores
● Sideloaded apps
● Alternative Payment Mechanisms

Google made some changes (Android already allows alternative apps stores and payment mechanisms)

Apple provided a detailed and complex response

● Heavily criticised by peers and app owners
● In April 2025 the EU fined Apple for non-compliance

The DMA is part of a larger worldwide trend.

8

 The App Store Duopoly

Some platform dependent security “included”

Contentious Issues:
● App Store Exclusivity

● In-App Payment Restrictions

● Anti-Steering Provisions

9

Response to the Apple Proposal

10

Epic Games vs Apple and Google
Epic Games accused Apple and Google of monopolistic
practices in their respective app stores app distribution and
in-app payment systems

● Apple:
○ Court ruled not a monopoly but anti-steering illegal
○ In 2025, Apple found in contempt for not fully

complying with the injunction
● Google:

○ Epic won (Google Play an illegal monopoly)
○ Google forced to allow alternative app stores and

billing on Android

11

The Rise of HarmonyOS & Xiaomi
● Launched by Huawei in 2019, built on

OpenHarmony
● in 2024 HarmonyOS NEXT removes any

Android dependencies
● HarmonyOS now dominant in China

smart device market
● Oniro from The Eclipse Foundation is

built on Open Harmony, aimed at the
global market

● Xiaomi is reportedly working on its own operating system, HyperOS, which
could be developed in collaboration with Huawei and BBK Electronics to create
a Google-free ecosystem.

12

The Rise of Cross Platform
Development

Framework Approx Share of Cross
Platform Apps Example Apps

Flutter 45% Google Pay, BMW, eBay

React Native 30% Facebook, Bloomberg,
Walmart, Pinterest, Wix

Cordova 10% Slack, Coinbase, Duolingo,
Mint

Security should be cross-platform too

13

PRESENTATION TITLE

Security Implications
● Complexity and costs of having separate security approaches for Google and

Apple
● New platforms such as Harmony OS
● Sideloaded apps and alternative app stores will happen
● Use of cross-platform development tools
● Less control over apps means shift to API protection
● App developers should be able to opt out of high taxes in return for

incorporating their own or third party security

Mobile app providers must

● Make no assumptions about how apps are distributed
● Urgently seek alternative security approaches

 14

Volkswagen Hack - May 2025
● Accessed any VW using the VIN

number and a simple script to find
the right 4 digit code

● Obtained internal app keys and
tokens, owner personal info, service
data for the vehicle (VIN)

● … and any other Volkswagen via a
BOLA issue

15

OWASP Resources

16

Worst Mobile Security Breaches
by OWASP Mobile Top 10 Category

OWASP Category Breach Example(s) Impact Summary

M1: Improper Credential Usage - Uber (2016): Leaked hardcoded credentials in mobile code- Toyota (2022): API keys
exposed in mobile apps

Secrets stored insecurely in apps led to unauthorized access
to backend APIs

M2: Insecure
Authentication/Authorization

- Instagram (2020): Logic flaw allowed unauthorized access to user DMs- WhatsApp
clones: Bypassed auth to hijack sessions

Incomplete session/token validation allowed account
hijacking

M3: Insecure Communication - Kaspersky (2021): Insecure HTTP endpoints in Android app- TikTok (2022): TLS
validation bypass risks

Data exposure in transit due to lack of HTTPS or certificate
validation

M4: Insecure Data Storage - Facebook (multiple): App caches exposed private data- Health apps: Local logs saved
sensitive user data in plain text

Local device storage leaks through logs, backups, or
accessible app files

M7: Code Tampering - Banking malware (e.g., Teabot, Hydra): Inject malicious code into legitimate apps-
Modded apps (APKMirror clones)

Reverse-engineered or tampered apps allowed attackers to
bypass security or steal data

M8: Security Misconfiguration - Grindr (2021): Debug settings and exposed backend endpoints- Retail mobile apps:
Excessive permissions or debug APIs active

Misconfigured apps leaked sensitive info or enabled abuse
of backend systems

17

Worst Real-World API Breaches by
OWASP API Top 10 Category

OWASP Category Breach Example(s) Impact Summary

API1:2023 Broken Object Level
Authorization

- Parler: Public user metadata via predictable IDs- Johns Hopkins: IDOR in
internal system

Exposed user profiles, medical or academic data;
easily scriptable attacks

API2:2023 Broken Authentication - Facebook (540M records exposed)- Uber (57M user details leaked) Poor token handling and stolen credentials
led to mass data compromise

API4:2023 Unrestricted Resource
Consumption

- GitHub/Twitter: Data scraping via search/email enumeration- T-Mobile:
Attackers extracted personal info in bulk

Automated scraping and DoS-style abuse
through lack of rate limiting

API6:2023 Unrestricted Access to
Sensitive Business Flows

- Ticketmaster bots- Nike SNKRS app: Abuse of limited-offer flows Business logic flaws led to unfair access,
fraud, and revenue loss

API9:2023 Improper Inventory
Management

- Snapchat: Exposed user data via debug API- Panera Bread: Customer data
leaked for months

Untracked, undocumented APIs exposed
critical user data silently

18

Mobile Threats at Runtime

19

Why Our Old Walls Are Crumbling - Traditional Defenses

● Current solutions for mobile security are often based on
outdated concepts.

● Static Security: Scans code before it's compiled, but is blind to
runtime behavior where attacks actually happen.

● Code Obfuscation: Increasingly a "speed bump, not a
roadblock."

● It's easily defeated by determined attackers.
● Modern AI-powered deobfuscation tools can automate the

process of reverse-engineering, rendering it ineffective as a
primary defense.

● We are trying to solve a dynamic, runtime problem with static,
pre-deployment solutions.

 20

Why Mobile SDKs are Critical for API Security

● Mobile apps are easily
modified, run in hostile
environments.

● Automated tools can
mimic valid traffic.

● Backend API security
has no visibility into
mobile threats.

No amount of backend analysis can detect if the device was rooted, if
the app has been modified, or if sensitive secrets are being exfiltrated.

A Mobile SDK Can Add the Missing Context
● Verify that the app has not been modified or repackaged.

● Ensure the device is not rooted/jailbroken, running on an emulator, or
tampered with.

● Continuously attest the runtime environment using trusted hardware or
integrity checks.

● Bind requests to the genuine app using cryptographically signed tokens
(e.g., JWTs).

● Block automated tools like Frida, Magisk, Xposed before they even touch
the API.

21

PRESENTATION TITLE

What is really needed
Continuous runtime,
transaction-level security:
multi-platform, easy to manage

● RASP (Runtime App Self
Protection)

● App Attestation
● Secure Client Validation
● Real Time Analytics
● Dynamic Secrets (Not embedded)
● Certificate Pinning (Dynamic, OTA)
● Over-the-Air (OTA) Updates

 22

Effective App and Device Attestation

1
2

3

4

Register new app
releases

SDK collects and
sends app and
device integrity
measurements

Cloud service checks
measurements and
sends JWT to app

Signed short-lived
JWT token indicates
if app and device
validly attested

APIs

Cloud Validation
SDK

 23

Google Runtime Security Limitations

● Google PlayIntegrity and SafetyNet are
also “free” to App Developers

● Android only, needs Play Services
● Limited device checks
● Slow and complex to implement
● No MitM protection or dynamic secrets

management

24

Apple Runtime Security Limitations
● Apple DeviceCheck and AppAttest are

“free” to Mobile App Developers
● iOS only
● Limited device checks
● Limited analytics
● Non-published service rate limits
● Complex to implement
● No MitM protection or dynamic secrets

management

 25

Extending Attestation to Secret Protection

1
2

3

4
5

Backend
verifies API
key

Management of
API Keys

SDK collects and
sends app and
device integrity
measurements

Cloud service
checks
measurements and
delivers API Key to
app

Just-in-time
delivery of API
keys from
validated apps

● Just-in-time delivery of
secrets to mobile apps,
only when needed and
only if app is safe

● Dynamic and secure
cloud management of
secrets

● Prevents abuse of
secrets stolen from any
source

● Must works with
owned and 3rd party
APIs

APIs

SDK
Cloud Validation

26

Backend Integration

 27

Conclusion - The Need for End-to-End
Mobile App and API Protection

1. Shift Focus: Prioritize mobile API security as much as, or more
than, client-side app security. The data lives on the backend.

2. Distrust the App Stores: They are distribution platforms, not a
security control.

3. Embrace Runtime Security: Static analysis and obfuscation are
not enough. You need runtime protection and the agility of OTA
updates.

4. Prepare for the New World: A de-monopolized, global,
multi-store ecosystem is coming. Your threat model must expand
to include it.

Thank You

ted.miracco@approov.io
george.mcgregor@approov.io

mailto:ted.miracco@approov.io
mailto:george.mcgregor@approov.io

 29

Approov Promotional Stuff…
● Follow us on X.com, LinkedIn,

BlueSky
● Approov blog
● Upwardly Mobile API & App

Security Podcast
○ 67 Episodes
○ Security News and Information

● WE ARE HIRING!
www.approov.io

http://x.com
https://www.linkedin.com/company/criticalblue/
https://bsky.app/profile/approov.bsky.social
https://approov.io/blog/
https://approov.io/info/careers

 30

Extra Resources

On Apple and Google security:
https://approov.io/blog/limitations-of-apple-devicecheck-an
d-apple-app-attest
https://approov.io/blog/limitations-of-google-play-integrity-a
pi-ex-safetynet
Alignment with OWASP
https://approov.io/download/Achieving-OWASP-App-Resilie
nce.pdf
https://approov.io/info/how-to-use-the-2024-owasp-mobile-t
op-ten
Other whitepapers and videos

 https://approov.io/resource/

https://approov.io/blog/limitations-of-apple-devicecheck-and-apple-app-attest
https://approov.io/blog/limitations-of-apple-devicecheck-and-apple-app-attest
https://approov.io/blog/limitations-of-google-play-integrity-api-ex-safetynet
https://approov.io/blog/limitations-of-google-play-integrity-api-ex-safetynet
https://approov.io/download/Achieving-OWASP-App-Resilience.pdf
https://approov.io/download/Achieving-OWASP-App-Resilience.pdf
https://approov.io/info/how-to-use-the-2024-owasp-mobile-top-ten
https://approov.io/info/how-to-use-the-2024-owasp-mobile-top-ten
https://approov.io/resource/

31

Revisiting the OWASP Mobile Top 10
Category Title Description

M1 Improper Credential Usage Insecure handling of passwords, API keys, tokens, or certificates.

M2 Insecure Authentication/Authorization Weak or flawed user identity or session management mechanisms.

M3 Insecure Communication Unprotected transmission of sensitive data (e.g., via HTTP, weak TLS).

M4 Insecure Data Storage Improperly secured sensitive data at rest on the device.

M5 Insufficient Cryptography Use of broken or improperly implemented encryption.

M6 Insecure Code Quality Bugs and unsafe coding patterns leading to vulnerabilities.

M7 Code Tampering Lack of protections against reverse engineering or code modification.

M8 Security Misconfiguration Incorrectly set permissions, exposed debug services, etc.

M9 Insecure Dependencies Use of vulnerable third-party libraries or SDKs.

M10 Insufficient Security Controls Missing runtime protections, lack of defense-in-depth mechanisms.

32

OWASP API Top 10
Category Title Description

API1:20
23

Broken Object Level Authorization APIs expose endpoints that handle object identifiers, creating a wide attack surface for
unauthorized access.

API2:20
23

Broken Authentication Authentication mechanisms are improperly implemented or absent, enabling attackers to
compromise accounts.

API3:20
23

Broken Object Property Level
Authorization

APIs allow access or modification to properties that should not be exposed.

API4:20
23

Unrestricted Resource
Consumption

APIs don’t impose limits on resource usage, enabling DoS attacks.

API5:20
23

Broken Function Level
Authorization

Access control checks are missing or inconsistent across functions.

API6:20
23

Unrestricted Access to Sensitive
Business Flows

Lack of access controls on high-value business actions (e.g., purchases, transfers).

API7:20
23

Server Side Request Forgery
(SSRF)

APIs fetch remote resources without validating the URL, enabling attackers to access
internal systems.

API8:20
23

Security Misconfiguration Poorly configured security headers, CORS, or default settings expose APIs to risks.

API9:20
23

Improper Inventory Management Lack of visibility into API versions and exposed endpoints leads to shadow APIs and
outdated versions being exploited.

API10:2
023

Unsafe Consumption of APIs Trusting external APIs without validation can result in data leaks or unexpected behavior.

33

PRESENTATION TITLE

Part 2 - The Cesspool- Mobile App
and API Exposure
● Volkswagen example
● Back to basics - the mobile app and API attack surfaces
● Real world Attack scenarios
● Obfuscation and a false sense of security
● Revisit Apple and Google Security - more about the shortcomings
● Non-negotiable -> Security should be runtime, transaction-level, multi-platform,

easy to manage

