
Extending Open Source
Tools using AI

or

Generating a DefectDojo Parser using only AI

Unify. Connect. Secure. © 2025 DefectDojo, Inc. All rights reserved.

2Extending Open Source Tools using AI

➢ 31 yrs
➢ 27 yrs
➢ 19 yrs
➢ 10 yrs
➢ 3 yrs
➢ 2 yrs
➢ 9 months
➢ 3 months

Howdy

Tracy Walker

3AI - Not just for cheating through College Extending Open Source Tools using AI

4“As big as the internet in 1990…”

● Itinerary when visiting a new City
● Packing lists for “special” trips
● Summarize foreign language meetings

○ Recording > Whisper > .txt > LLM > Summary
● PC troubleshooting
● Replacing bad PC motherboard, updating BIOS
● Electrical Wiring Education
● Calculating OneWheel charge time to specific %
● Responding intelligently to familial political arguments
● Restoring antique rusty dumbbells
● 2024 Taxes

“What’s some normal stuff I’ve used an LLM to do?”

5

● Bash scripts
● Python scripts
● Parser Analysis - Supported scanners, file types
● Pandemic / Disaster Plan
● Extracting Slack .json into a FAQ sorted by most popular Q?s
● Documentation template
● Documentation Updates <<- HUGE
● Parser Deep Analysis - Data parsed / dropped
● Parser Generation

“What I’ve really been using A.I. to do?”

6

1. What’s the OSS Tool?
2. How can it be “extended”?
3. What was I trying to do?
4. Start: The Quest to Build a Parser
5. Side Quest 1: Parser Docs
6. Side Quest 2: Hostile Liquid
7. Boss Battle: Fuego Rapido
8. Bonus Quest (Time/Talk): Dojo Docs

A Journey
 (Our Agenda)

Extending an Open Source Tool Using AI

7

What
Is
DefectDojo?

01

8

● Unified Vulnerability Management Platform

● Created by AppSec Professionals in 2014

● OWASP Flagship Project 10 years

● ~40 Million downloads

● 400+ Contributors

● GitHub Top 25 Open Security Project

● Adaptable Data Model / django Architecture

● 200+ Integrations = PARSERS!!

● OSS scalable to 20k+ findings

● Pro scalable to 20M+ findings, SaaS, UI, etc.

What is ?

www.DefectDojo.com (OSS & Pro)

9

10

11

What was I trying to do?

03 1. Learn how to build a DefectDojo parser

2. Save engineering time & effort for creating parser

3. Learn to use an AI LLM for something “real”

4. Contribute to DefectDojo & Security Community

5. Experience DefectDojo OSS from community PoV

6. Collaborate / Share / Learn New Ideas

12

The Quest
 To Build
 A Parser

04

13As a Community Member
Tools & Code

1. 100% open source sources & outputs
Code: https://github.com/DefectDojo/django-DefectDojo
Documentation: https://docs.defectdojo.com/

2. Dev Environment - MBPro / Docker / Github DefectDojo

3. Claude.ai Pro Personal Subscription ($20.76/Month)

4. ChatGPT / DeepSeek / Google Gemini

5. CLI commands - docker / git / vi / python

Extending Open Source Tools using AI

14

Rules?

1. No proprietary anything uploaded to LLM.

2. Approach as community member - No special help.

3. No human generated code - prompts only.

4. Yes copy-n-paste, debugging, editing.

5. Repeatable / Automatible as much as possible

6. Create something of value - not just time saved

Extending Open Source Tools using AI

15

● 200+ Security Scanners / 300+ File Formats
● 100% Open Source - Used by DefectDojo OSS and PRO versions
● 100% Developed by community & DefectDojo engineering
● Varying data mapping detail / documentation / parsing functions
● No Mapping Details

Parser Specifics
Extending Open Source Tools using AI

parser.py Actual parser written in Python

unittests/scans/{many, no, one_vuln}.json Sample files for Unit Tests

unittests/tools/test_parser.py Unit Tests

dojo/settings/settings.dist.py Hash based deduplication settings

connecting_your_tools/parsers/file/doc.md Documentation for Parser

16

https://github.com/DefectDojo/django-DefectDojo/tree/master/unittests/scans

17

❖ LLM’s can “read” markdown, html, text, json, python
❖ Build documentation, finding class, parser documentation
❖ How many .CSV Parser code & example files exist
❖ Use example parsers as primary reference
❖ Generate parser, build, test, refactor, repeat
❖ Generate unit test
❖ Generate documentation

1st (failed) Approach to LLM generated a parser
Extending Open Source Tools using AI

181st step: Use Claude.ai to Find Existing .csv Parsers

19

● Loaded .csv files, parser documentation, parser examples
● Required multiple changes before successful build
● Missing several data fields - fixed to import all data fields
● Unit tests failed to execute
● LLM began repeating errors / hallucinating

1st Attempt
Extending Open Source Tools using AI

Lessons Learned
● Prompt order is critical
● LLM does not consistently “link” data relationships between prompts
● Troubleshooting / Error Correction too high
● Chats cannot be too long or complex
● Something called “chunking”

20

LLM Specifics:

Extending Open Source Tools using AI

21

● Context Window - Amount of text LLM can use as input
● Tokenization - input & output broken down to smaller units
● Prompt Engineering (A.I. Jockey)
● Hallucinations - factually incorrect or not present in input data.
● Temperature - Controls “randomness” of output (low = 0.2 / high = 0.8)

● Attention - Weight of different Tokens within Context Window

LLM Definitions
Extending Open Source Tools using AI

Additional LLM Lingo
● Chunking - Breaking input into smaller pieces (also applies to problems)

● Branching - Editing a prompt and generating new branch of output
● “No Shot” / “Few Shot” - Examples given
● “Vibe” coding
● “Slopsquatting”

22

● Feels.. Negative / Sarcastic?

● Refers to “Code Completion”

● Ignores QA / Testing

● Copy-n-paste errors? Yes!!

● Random in / Random out

Vibe Coding
Extending Open Source Tools using AI

https://en.wikipedia.org/wiki/Vibe_coding

01

02

03

04

How
Slopsquatting
Attacks Work

AI
Hallucinations:
AI code
generators
suggest
non-existent
packages.

Malicious
Registration:
Attackers
register these
packages with
malicious code.

Blind
Installation:
Developers
install these
malicious
packages.

Supply Chain
Attack: Malicious
code becomes
part of the
project.

24

● Break parser problem down into small chunks - multiple chats
● Full Shot (examples for input / parser code / output)
● Branch (Edit) to achieve high quality responses with each prompt
● Use LLM to generate output to be used for new chats.

○ (Data Mapping index file to save LLM from having to do the extra
lift every time!)

● When hitting error, debug to resolution, then edit the prompt where
the error occurred to cause the chat to branch and “skip”
troubleshooting.

New Approaches Practices
Extending Open Source Tools using AI

25

● Claude Projects!! (Store artifacts reused by new conversations)
● Reused previous parser prompts but with much more detail and

planning/approach.
● Used 7 detailed mapping documents for many example parsers
● Generated mapping for new parser 1st as design reference, then

generate code

2nd Attempt (successful!) Extending Open Source Tools using AI

Lessons Learned
● Use AI to map data elements to feed back into AI as reference
● Compartmentalize documentation
● Generated dev environment metadata so LLM understands the env
● Back-up above errors within prompt tree to start new branches
● Claude Message Limits Reset Every 5 Hours

26Claude Project Extending Open Source Tools using AI

27Claude Project Extending Open Source Tools using AI

28 Remember the Existing .csv Parsers?

29

Purpose: Generate detailed
mapping of existing parsers

Identify all .csv parsers
Import .csv into DefectDojo

.csv Input -> Parser
Parser -> Finding Object
Finding Object -> .json Output

Copy & Rename 3 files
Upload into Claude Project

Mapping Parsers Extending Open Source Tools using AI

30Output for Input! Extending Open Source Tools using AI

Purpose: Generate detailed
mapping of existing parsers

Identify all .csv parsers
Import .csv into DefectDojo

.csv Input -> Parser
Parser -> Finding Object
Finding Object -> .json Output

Copy & Rename 3 files
Upload into Claude Project

31

Side Quest:
 Parser Mapping &
 Documentation

05

32

Before

Parser Documentation Extending Open Source Tools using AI

33Before: Extending Open Source Tools using AI

34

Generate detailed mapping
 index for example parsers

Step 1 - Create .json Output
A. .csv Input -> Parser
B. Parser -> Finding Object
C. Finding Output -> .json

Step 2 - Load 3 files + prompt

Mapping Parsers Extending Open Source Tools using AI

35Mapping Parsers Extending Open Source Tools using AI

36NEW
After
Pa

rs
er

 D
oc

um
en

ta
ti

on

37Pull Request!

38

Side Quest:
 CodeQL

06a

“It’s easy to smoosh stuff together…
 Separating smooshed stuff? Very difficult.
 Let’s just eat it.” -me

39

Display giant screenshot separately from presentation
Note the “Help” data element has multiple data pieces embedded within the same “help”
field. Universal Parser cannot split data out of a single element.

40

Side Quest:
 Hostile Liquid
(Attempting a parser for Fluid Attacks)

06

41Fluidattacks Extending Open Source Tools using AI

42Fluidattacks Extending Open Source Tools using AI

43

Boss Battle:
 Fuego Rapido
(A working parser for RapidFire)

07

44

Generate detailed mapping
 index for example parsers

Step 1 - Create .json Output
A. .csv Input -> Parser
B. Parser -> Finding Object
C. Finding Output -> .json

Step 2 - Load 3 files + prompt

Let’s view this live!

Generating Parsers Extending Open Source Tools using AI

Questions
Comments

Thank You!

Tracy Walker tracy@defectdojo.com

