

Lesson Plan

1 The State of Software

2 Program Analysis

3 Implementing the Impossible

4 Stages of Program Analysis: Lexing

5 Stages of Program Analysis: Parsing

6 Stages of Program Analysis: IR Generation

7 Stages of Program Analysis: Dataflow Analysis (bonus)

8 Extra Considerations

9 Conclusions

Brandon Wu Program Analysis 23 October 2024 2 / 98

1 - The State of Software

Software and the World

On August 20th, 2011, Silicon Valley venture capitalist and and entrepreneur Marc
Andreessen1 published an essay entitled "Software is eating the world".

This essay included a lot of business-oriented reasons for why software was
immensely disrupting each individual economic sector, for reasons of ease of use,
speed of execution, and reach of influence, among others.

Now, more than a decade after this article, it’s an incredibly obvious fact that
software already has eaten the world. You cannot get away from it – it is
everywhere, and it is everything.

1Currently a board director for Meta Platforms.
Brandon Wu Program Analysis 23 October 2024 4 / 98

The State of Software Engineering

One theme that crops up in the general practice of software engineering is to try to
produce as little code as possible, because any human writing any amount of code
has some probability of producing a bug.

The less code we write, the less possibility of writing a bug.

So what can we say about the immense volume of code produced by the tens of
millions of software developers around the world?

Answer: It is horribly, immensely buggy, and full of mistakes.

Brandon Wu Program Analysis 23 October 2024 5 / 98

What’s in an Error?

When you write a mistake in your code, what does it often look like?

Maybe you made a typo:

✗

def fact(n):
if n == 0:

return 1
return n * fac(n - 1)

✓

def fact(n):
if n == 0:

return 1
return n * fact(n - 1)

Brandon Wu Program Analysis 23 October 2024 6 / 98

What’s in an Error?

Or maybe you just have a simple type error:

✗

def initialize(data):
d = {}
for s in data:

d[s.strip] = None
return d

✓

def initialize(data):
d = {}
for s in data:

d[s.strip()] = None
return d

Brandon Wu Program Analysis 23 October 2024 7 / 98

A Machine Learning Parable

For most of these errors, they can seem innocent enough. Most are able to be
identified and fixed before code ever sees the light of day.

Not all are so lucky, however. Imagine that you are a machine learning engineer.

You have spent the past six months working on a state of the art large language
model, and finally you are ready to put it to the test. You just make a few
adjustments (mostly adding comments and clarifying names), before you run the
model and then decide to go on a vacation to France for two weeks.

When you return from your vacation, you discover that your model failed with:
NameError: name ’modle ’ is not defined. Did you mean: ’model ’?

This can actually happen.

Brandon Wu Program Analysis 23 October 2024 8 / 98

The Cost of Mistakes

What’s the point? Programmers make mistakes.

There are many programmers in the world. Programs that make these kinds of silly,
one-off mistakes happen millions of times in a single day. For every mistake which is
caught before reaching a sensitive application, there are millions more waiting to be
uncovered. We need to build tools, compilers, and programming languages that can
guard against these mistakes because the cost of allowing them is too high.

Tony Hoare once referred to his invention of the null pointer2 as his billion-dollar
mistake3. We are talking about fighting a war upon which rests not only billions
upon billions of dollars across every conceivable industry, but upon which rests the
security and continued operation of our society.

2A programming idiom which has led to countless errors.
3Still, one must imagine the person capable of making a billion-dollar mistake fortunate.

Brandon Wu Program Analysis 23 October 2024 9 / 98

The Five Horsemen

Well, he tried his best.

Brandon Wu Program Analysis 23 October 2024 10 / 98

Battling Software

How can we prevent these bugs? How do we make sure that, for the prodigious,
gargantuan, and overflowing deluge of software that is pumped out every day, it is
as safe and as correct as possible? The alternative is a reality that is horrifying to
contemplate. 4

We need a solution which scales with the amount of software in the world. We have
to somehow tackle the problem of software correctness, at scale.

Software is eating the world.

It’s time to bite back.

4I highly recommend the book This Is How They Tell Me the World Ends: The Cyberweapons Arms
Race by Nicole Perlroth.

Brandon Wu Program Analysis 23 October 2024 11 / 98

2 - Program Analysis

Me!

My name is Brandon Wu, and I am a program analysis
engineer working at Semgrep.

I have been working at Semgrep for two-and-a-half
years now, and I was educated in computer science at
Carnegie Mellon University, where I previously lectured
on the subject of functional programming.

Semgrep is a software security startup and applica-
tion security platform that helps developers find and
fix security vulnerabilities in their code through secure
guardrails, at minimal friction to their workflow.

Mission To profoundly improve software security.

@onefiftyman
LinkedIn

Brandon Wu Program Analysis 23 October 2024 13 / 98

https://semgrep.dev/
https://brandonspark.github.io/150/
https://twitter.com/onefiftyman
https://www.linkedin.com/in/brandon-wu-79935116b/

On Understanding Program Analysis

As security professionals, I know that I don’t have to stress the importance of
securing software to any of you.

What I hope that you gain out of this talk is an appreciation of these tools5 that we
use to secure software.

There are many vendors out there, and many solutions, and it is quite easy to
consider these tools as black boxes, or as magic. I hope that demystifying these
tools does a few things for you:

1 shows you what to realistically expect that a SAST tool is capable of
2 gives you the ability to discern when a SAST tool is performing well or not
3 gives you the ability to make discerning choices when choosing a SAST tool

5He says, being someone who develops one such tool
Brandon Wu Program Analysis 23 October 2024 14 / 98

Make it cheap to make it expensive to write secure software.

today, slightly differently:

Make it easy to understand why doing program analysis is hard.

Brandon Wu Program Analysis 23 October 2024 15 / 98

What is Program Analysis?

Def Program analysis is the art of discovering undesirable behaviors in programs,
usually by automated, programmatic means.
These undesirable behaviors may include correctness, performance, security, and
legibility. Ultimately, it encompasses any property which is worth testing, of a
program.
In essence, program analysis entails writing programs to analyze programs.

def analyze(program):
if programIsBad(program):

dont()

Figure 1: An extremely simplified view of any program analysis tool.

Brandon Wu Program Analysis 23 October 2024 16 / 98

Flavors of Program Analysis: Dynamic

Program analysis generally comes in one of two flavors:

Def Dynamic program analysis has to do with figuring out program behavior by
observing its behavior at run-time.

This can include things like fuzzing, which involves running the program on a wide
range of random inputs, profiling, which involves measuring the run-time of a
program on some inputs, and even the simple act of writing tests.

Dynamic program analysis is useful, and goes straight to the source in terms of the
program’s actual behavior, but it is limited in some other ways. Notably, if the target
program loops forever or takes a really long time, then dynamic program analysis
will do the same.

Another is that this doesn’t necessarily stop the code from being written or
committed in the first place. We want something even farther "left", if possible.

Brandon Wu Program Analysis 23 October 2024 17 / 98

Flavors of Program Analysis: Static

Def Static program analysis concerns ascertaining properties of programs
without ever running the program.

“ Costs to fix in development are 10 times lower than in testing, and 100 times lower
than in production. ”

This will be our focus for today. Specific applications of this analysis include:
• static application security testing (or SAST), which is the process of applying static

program analysis to code for security purposes
• syntax highlighting, which looks at a (possibly incomplete) program and tries to color it,

as its being written
• autoformatting, which looks at a program and tries to make it adhere to a certain

stylistic convention
• type-checking, which looks at a program and ascertains what type its constituent parts

have (if any)

Brandon Wu Program Analysis 23 October 2024 18 / 98

Explosive Repercussions

A computer program can be compared to a loaded pistol.

To know whether a pistol is defective, we could just shoot it, and see whether or not
it blows up. This is analogous to detecting an error at runtime, when actually
running a given program.

Or, we could be a little more thorough about it, and inspect the pistol for damage, or
if someone put .50 AE into a 9mm pistol6.

Obviously, the solution which ends up with the gun not exploding in our hands is the
preferable one.

6I had to look this up. Basically, big ammo goes in small gun.
Brandon Wu Program Analysis 23 October 2024 19 / 98

A Better Way

This is just another way of saying that we need a better method than just running
into errors blindly, when running code in real environments. Discovering a bug in the
Curiosity rover before it takes off is a miracle. Discovering a bug in the Curiosity
rover after it takes off is a failure.

This is the basic principle behind shift left, which means evaluating our programs
by some criteria as far before runtime as possible, or farther left, chronologically.

This will motivate today’s discussion of static analysis specifically, as a better way
of ensuring that we find mistakes as far left as possible.

Brandon Wu Program Analysis 23 October 2024 20 / 98

A SAST Tool’s Perspective

Brandon Wu Program Analysis 23 October 2024 21 / 98

A Minor Issue

This is the mission we have ahead of us. Before we can dive into more technical
details, however, we have one small issue before us:

Program analysis is inherently impossible.

Rice’s Theorem is a mathematical theorem in computability theory7 which states:
All non-trivial semantic properties of programs are undecidable.

In English:
It is impossible to definitively answer yes or no for any property of a program’s
behavior, in a finite amount of time.

7The field of computability theory is kind of similar to forum posts speculating on what would
happen in a fight between Batman and Goku. It’s just nerds getting together and thinking about
increasingly more complicated levels of impossibility.

Brandon Wu Program Analysis 23 October 2024 22 / 98

https://en.wikipedia.org/wiki/Rice%27s_theorem

The Halting Problem

This is a corollary of the Halting Problem, which states that it is impossible to write a
program to tell if a program loops forever or not.8 The reason why this is impossible
come out of asking a simple question: what should the following function return?

def foo():
if halts(foo):

loop()
else:

return

This ends up producing a paradox, in much the same way as the liar’s paradox.
Because any program can loop forever, this ends up tainting every other question
that program analysis could answer, meaning that all of them are inherently
impossible.

8Note that these claims of impossibility are in general. For instance, I can look at the program
while True: pass with my eyes and tell you that it loops forever, but we cannot write a program
which does that for every program.

Brandon Wu Program Analysis 23 October 2024 23 / 98

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Liar_paradox

Battling Impossibility

Well, that sucks. So then, with this knowledge, is this talk over?

No, because it only sucks if you’re a quitter.

Generally, when solving a hard problem, it’s usually either a sign that we are not
working hard enough, or our expectations are too high.

Well, in this case, this problem’s impossibility is a mathematical truth, so it’s not a
skill issue in terms of our ability to implement. That’s not the problem here.

So let’s lower our expectations.

It is impossible to definitively answer yes or no for any property of a program’s
behavior, in a finite amount of time.

The main innovation out of program analysis is – it’s only impossible if you insist on
being right all the time.

Brandon Wu Program Analysis 23 October 2024 24 / 98

Compilers and Program Analysis

Generally, we want our tools to be trustworthy. The day that a pacemaker or ladder
stops working is the day that someone gets hurt. Nobody wants to use something
which only works some of the time.

So, for most products, they must work all the time. To do otherwise would be sure
way to head straight for bankruptcy in the free marketplace.

Program analysis suffers from no such thing. Our goal will be to implement analyses
which always complete within a finite amount of time, albeit with the caveat that
sometimes they might be inaccurate or incomplete, or throw their hands up and say
"I don’t know".

Brandon Wu Program Analysis 23 October 2024 25 / 98

Full Employment

A funny corollary of this sentiment is something called the full-employment
theorem, which essentially states that there will always be jobs in program analysis
and compiler-writing, i.e. employment is always ensured9.
This is because, due to the fact that the task is inherently impossible, it’s always
possible to write a better analysis that covers more cases, or a compiler which can
produce better binaries. You just need more casework.

9Knock on wood.
Brandon Wu Program Analysis 23 October 2024 26 / 98

https://en.wikipedia.org/wiki/Full-employment_theorem
https://en.wikipedia.org/wiki/Full-employment_theorem

Program Analysis via Casework

For instance, no one is stopping you from doing this:
def halts(program: str) -> Optional[bool]:

if program == "x = 1":
return true

elif program == "x = 2":
return true

elif program == "while True:\n pass":
return false

Far from the cutting edge, but it works. A team of monkeys at typewriters could
eventually churn out a more effective halts function than exists anywhere else.

You might find this demoralizing. I find it motivating, somehow.

Brandon Wu Program Analysis 23 October 2024 27 / 98

Resolution

So, this is the scope of the task in front of us.

We have finite resources and finite time to solve a problem which is impossible to
solve.

And still, software is eating the world. The cost of failing is too high.

Time to put in some elbow grease and get to work.

Brandon Wu Program Analysis 23 October 2024 28 / 98

3 - Implementing the Impossible

Type Checking

Consider a more specific example of program analysis, namely that of
type-checking a program.

Consider a function f which adds two ints together. We might say that it has the
type of (int , int) -> int – that is, it takes in two integers and produces an
integer. Automatically determining this is the problem of type-checking.

Def A type is a thing that something might be.10

Let’s consider the problem of giving a type to //, which takes two integers and
computes their integer division.

10This is only slightly a joke, I saw this on Twitter once.
Brandon Wu Program Analysis 23 October 2024 30 / 98

A More Accurate //

We might say that it also has type (int , int) -> int, because it seems to take
two ints and return an integer.

There is one caveat, however. If we pass in 0 as the second parameter, it will crash
on us!

Well, this is a dynamic error. We want to catch such things before running the
program. Can we assign // a type, such that it will prevent us from ever running
code which passes 0 to //?

There are two properties that we would desire of such a type:
• we can ascertain it in a finite amount of time
• it says that a usage of // is ill-typed if and only if we pass 0, or a non-int, to it

It is impossible to have both of these things at the same time.

Brandon Wu Program Analysis 23 October 2024 31 / 98

Sweaty Palms

Brandon Wu Program Analysis 23 October 2024 32 / 98

Dependent Types and Type A Analysis

There is a class of languages which have very sophisticated type systems, called
dependently typed languages, where you can actually express this.

The issue is that type-checking in such languages can take forever, meaning we
would get the second property, but not the first. We will call this a Type A program
analysis.

So the other track will be to get the first property, but not the second. We will have
to accept being wrong sometimes, and either rejecting programs which do not
divide by zero, or accepting programs which do. We will call this Type B program
analysis.

Brandon Wu Program Analysis 23 October 2024 33 / 98

An Analogy for Type B Analysis

Consider the following analogy.

You are in charge of security at an airport.

You are acutely aware of the fact that in the early 2000s, a man tried to set off
plastic explosives concealed in his shoes, during a transatlantic flight from France
to Florida.

The issue is that you don’t have a good way of telling whether an arbitrary individual
might have explosives in their shoes, or not.

So, how do you minimize the chances?

This is the story of why everyone needs to take off their shoes in the airport.

Brandon Wu Program Analysis 23 October 2024 34 / 98

A Rough Approximation

The moral of this story is that, while it may be difficult or impossible to gather an
exact answer (who has explosives in their shoes), it’s easy to obtain an
approximative answer: assume that everyone has explosives in their shoes.

So just scan everybody’s shoes. Problem solved.

So how can we tell which programs contain an unsafe call to //? Well, if we don’t
mind being wrong sometimes...

def containsUnsafeDivision(program: str) -> bool:
return "//" in program

Brandon Wu Program Analysis 23 October 2024 35 / 98

Approximation in Practice

Let’s see how it behaves:
• containsUnsafeDivision("x = 2") returns False . ✓

• containsUnsafeDivision("1 // 0") returns True . ✓

• containsUnsafeDivision("1 // 1") returns True . ✗

• containsUnsafeDivision("# https :// google.com") returns True . ✗

We see that it works... sometimes.

But this is precisely what a Type B program analysis purports to do. We accept that
we might be wrong, sometimes, in exchange for the fact that this test always
completes in short order.

Brandon Wu Program Analysis 23 October 2024 36 / 98

Tradeoffs

Which outcome is more preferred? Well, it turns out the answer is "neither of them".

We are basically saying that, to be able to reject all programs which might divide by
zero, we can either accept infinitely looping compile times, or we can reject every
program which contains the characters div in its source text.

Now, with more sophisticated techniques, we can do a little bit better than rejecting
every program containing div. But not by much.

It turns out, in practice, the right solution will be to simply not care so much about
the division by zero case. It’s not worth the trade-offs.

Brandon Wu Program Analysis 23 October 2024 37 / 98

Downscoping and Type C Analysis

We said it was impossible to have the virtues of Type A and Type B analysis at the
same time. That’s true, if we fix the problem statement. We might say that Type C
program analysis is to both terminate and be correct, but at the cost of simplifying
the problem we are trying to solve.

Type-checking is usually an example of a Type C analysis. So, thus we end up with
not being able to statically catch division by zero errors. For the question of "does
this program divide by zero?", we decided the answer is "we don’t care".

What about the question of "does this program divide by a non-integer"?

It turns out, this is perfectly solvable in a terminating manner.11 The reason why this
is OK is that "non-integer" is an approximative query – "zero" is specific.

11For the purposes of this presentation, it’s not actually important this problem is solvable. Just
know there are some program analysis problems which can be solved without looping or
approximating (but few).

Brandon Wu Program Analysis 23 October 2024 38 / 98

Recap

So let’s recap for a second:
• we would like to answer specific questions about programs, which are

impossible to do in general.
• We need to give up one of guaranteed termination, perfect accuracy, or solving

that exact problem. Types A, B, and C analysis correspond to giving up each of
these things, respectively.

Specific examples include:
• dependent typechecking is a Type A analysis (can loop forever)
• rejecting all programs with div is a Type B analysis (rejects valid programs)
• regular typechecking is a Type C analysis (give up catching divide by zero)

For most practical program analysis tools, looping forever is not an option.12 So for
our purposes, we are generally interested in Type B and Type C analysis.

12We might call this "doubly impossible".
Brandon Wu Program Analysis 23 October 2024 39 / 98

Flavors of Program Analysis

An easy way to remember program analysis is to envision it as three different kinds
of people.

Type A analysis is
personified by an old

person (they might take
forever to answer)

Type B analysis is
personified by a flat

earther (they sometimes
spout nonsense)

Type C analysis is
personified by a literal

child (they can only
answer simple questions)

Brandon Wu Program Analysis 23 October 2024 40 / 98

The Stages of Program Analysis

The lifecycle of any program analysis tool begins as many things do–not with a
bang, but with a text file.

The typical stages of program analysis are as follows:
• lexing, which takes in a program as a string, and outputs a token list, which

simply groups together fundamental units of the program
• parsing, which takes in a token list, and outputs an abstract syntax tree of

type ast, which is a tree representing the program’s structure
• intermediate representation, which turns the abstract syntax tree into
abstract assembly, that breaks apart the high-level constructs into
assembly-like primitives

• analysis, which may involve a variety of techniques, such as dataflow analysis,
pointer analysis, and symbolic execution

Brandon Wu Program Analysis 23 October 2024 41 / 98

The Lifecycle of Static Analysis

program text

token list

abstract syntax tree

abstract assembly / control-flow graph

start

profit!

lexing

parsing

IR generation

analysis

Brandon Wu Program Analysis 23 October 2024 42 / 98

4 - Stages of Program Analysis: Lexing

The Lifecycle of Static Analysis: Lexing

program text

token list

abstract syntax tree

abstract assembly / control-flow graph

start

profit!

lexing

parsing

IR generation

analysis

Brandon Wu Program Analysis 23 October 2024 44 / 98

Lexing by Example

Let’s visually see how we can think the process of lexing. We’ll start with an
example Python program, represented as a string.

x = 2 - 1

def foo(y):
return 5 + x

We then tokenize the input program, so that instead of thinking of it as a list of
characters, we group together all characters that are part of the same semantic unit.

Brandon Wu Program Analysis 23 October 2024 45 / 98

Tokenization

Linguistically, tokenization is similar to reading sentences as words, instead of as a
list of letters. Let’s highlight all the "words" of this program.

x = 2 - 1

def foo (y):
return 5 + x

During the process of lexing, we would have some way of representing this data as
a list of tokens. We would need to know that they are distinct, and be able to
associate data to each token when needed (for instance, an integer token would
need to contain the information of the integer it represents).

This is typically achieved via a tagged union, effectively an enum with data.

Brandon Wu Program Analysis 23 October 2024 46 / 98

Tokens, Pictorially

So after tokenization we might get something like this:

x

ID

=

EQ
2

NUM

-

MINUS
1

NUM

def
DEF

foo
ID

(
LPAREN

y

ID
)

RPAREN

:

COLON

return

RETURN
5

NUM

+

PLUS

x

ID

Caveat Python is a whitespace-sensitive language, so technically this is a slightly
simplified account of the information you would need to produce to parse correctly.
We have elided the details here for simplicity, but the idea is the same.

Brandon Wu Program Analysis 23 October 2024 47 / 98

5 - Stages of Program Analysis: Parsing

The Lifecycle of Static Analysis: Parsing

program text

token list

abstract syntax tree

abstract assembly / control-flow graph

start

profit!

lexing

parsing

IR generation

analysis

Brandon Wu Program Analysis 23 October 2024 49 / 98

Duality

One of the most fundamental scientific discoveries of the 19th and 20th centuries
was concerning the nature of light.

Through a series of experiments, the wave-particle duality of light was discovered,
which demonstrated that light displayed properties of both waves and particles,
depending on the context. This meant that light could be thought of as both a
particle and a wave.

Programs display a similar behavior, in that they experience a similar dual existence.
Programs can be thought of as both text and as trees.

Brandon Wu Program Analysis 23 October 2024 50 / 98

Text: Pros and Cons

Before we can discuss the tree nature of programs, we should talk a little bit about
the pros and cons of thinking of programs as text.

Pros:
1 easy to edit in an application-independent way
2 easy to search and refactor at scale
3 simple data format

Cons:
1 difficult to analyze the semantics of
2 must be validated for syntactic correctness before use

Brandon Wu Program Analysis 23 October 2024 51 / 98

Analyzing Programs as Text

For instance, suppose that we’re interested in figuring out whether a program ever
prints the value 0. This might seem easy:

def hasZeroPrint(program: str) -> bool:
return "print (0)" in program

This is a simple first cut. What’s wrong?

The problem is that this is only a very rough solution. It wouldn’t cover, for instance,
the case where we assign a variable to 0 before printing it.

is_zero = 0
print(is_zero)

Brandon Wu Program Analysis 23 October 2024 52 / 98

Analyzing Programs as Text, cont.

Nor would it deal with the case where we format our code slightly differently:
now there’s a newline before the 0
print(

0
)

Text is ultimately a very poor representation of the structure of a program. It’s
usually nice for development purposes13, but it ultimately doesn’t do a great job of
telling us what a program means.

To solve this problem, we’re going to need to go hug some trees.

13And even this is under dispute.
Brandon Wu Program Analysis 23 October 2024 53 / 98

https://hazel.org/

On Expressions and Trees

To help understand this idea by analogy, consider the following example.
If you are familiar with the idea of op trees14, recall that we can have a tree
corresponding to some arithmetic expression:

+

-

1 2

3

This tree happens to denote the expression (1 - 2) + 3.
14You might be familiar with this as a classic homework assignment from undergrad.

Brandon Wu Program Analysis 23 October 2024 54 / 98

Abstract Syntax is Abstract

This is what we call abstract syntax, since it elides some of the specific syntactic
details, like the fact that there is a left and right paren around the subtraction.

In the end, this doesn’t matter, because the tree structure serves as a proxy for
what the parentheses were trying to tell us. We thus can get away from the precise
coding details, while preserving the meaning, by using an abstract syntax tree, or
AST for short.

Brandon Wu Program Analysis 23 October 2024 55 / 98

Programs are Trees

We can do something very similar to op trees with programs. We will instead have
an abstract syntax tree which denotes the structure of the program.

This tree denotes the program
x = (1 - 2) + 3

Note how it has no mention of parens or the =
sign, because they don’t actually matter in terms
of what the program means!
Generally, we can get rid of things like colons,
equals signs, keywords, and parentheses in
abstract syntax. These syntactic details only
existed to let us know what the actual underlying
tree looked like.

Assignment

x +

-

1 2

3

Brandon Wu Program Analysis 23 October 2024 56 / 98

Abstract Syntax Trees

So, for our running example program, we could obtain the following abstract syntax
tree:

Declarations

Assignment

x -

Int 2 Int 1

FuncDef

foo TypedArg

x int

return

+

Int 5 Id "x"

Brandon Wu Program Analysis 23 October 2024 57 / 98

Abstract Syntax Trees: The Point

What’s the point?
When we parse programs into abstract syntax trees, the process of conducting
analysis on the program becomes much easier. We can now ignore syntactic noise
(how the program looks) and focus on the semantics (what the program means).
As a child, you were told not to judge a book by its cover. Abstract syntax trees are
a technique that allows us to do just that.
Seen in such a way, our query for finding returns of 0 can be a lot simpler:

def hasZeroReturn(node: ast) -> bool:
if node.kind == "Return" and len(node.children) == 1:

child = node.children [0]
return child.kind == "Int" and child.value == 0

return any(hasZeroReturn(child) for child in node.children)

Brandon Wu Program Analysis 23 October 2024 58 / 98

Abstract Syntax Trees: The Rub

The eagle-eyed of you might have noticed an issue, however.

Caveat Our new hasZeroReturn function still does not deal with cases where we
assign a variable to 0.

While abstract syntax trees allow us to ignore some of the syntactic burdens of the
text, they will not tell us the entire story of the program. We will still need to
descend further, into another format, before we can answer more sophisticated
questions that have to do with control-flow.

Brandon Wu Program Analysis 23 October 2024 59 / 98

5 - Stages of Program Analysis: IR
Generation

The Lifecycle of Static Analysis: IR Generation

program text

token list

abstract syntax tree

abstract assembly / control-flow graph

start

profit!

lexing

parsing

IR generation

analysis

Brandon Wu Program Analysis 23 October 2024 61 / 98

A Control-Flow Example

As stated before, we have some trouble with finding returns of 0 that make use of a
previously-declared variable:

is_zero = 0
print(is_zero)

One might think that we could just iterate over statements in the program, take note
of any variables which are assigned to 0, and then proceed as usual.
This would work, but we might face an issue when we see statements which are not
simple variable declarations. For instance:

if condition:
is_zero = 0

else:
is_zero = 1 # haha tricked you

print(is_zero)

Brandon Wu Program Analysis 23 October 2024 62 / 98

A Control-Flow Example, cont.

The problem is that, statically, condition could be a condition which is fully
dynamic in nature. We might not be able to determine which branch of the if
statement is taken, or how many times it runs.

This runs us straight into the Halting Problem, as before. What can we do?

Recall our previous discussion on Type C analyses. In the same spirit, we can
downscope and give up on the idea of perfectly knowing which condition is taken.

Moral For most software, being wrong is a hellish scenario that is too horrifying to
even contemplate. For program analysis tools, being wrong is Tuesday.

We instead distill our query into two possible questions:

Question Is it possible for a given return to return 0?

Question Is it always the case that a given return will return 0?

Brandon Wu Program Analysis 23 October 2024 63 / 98

Problems in Program Analysis

Before we can describe the technique that we will use to solve these specific
questions, let’s look at a few other problems we are interested in answering with
program analysis, which will turn out to be related.

There are many, but a few that stand out are as follows:
• is it possible for data from some source to reach some function?
• is an error state reachable?

Brandon Wu Program Analysis 23 October 2024 64 / 98

Problems in Program Analysis: Taint Analysis

The problem of taint tracking entails whether it is possible for data from some
source to reach a specified function.

def foo():
x = input()
y = x.strip()
eval(y)

In this code example, we see that data from the call to input() goes through a
strip(), which removes whitespace, and then reaches the call to the sensitive
eval() function.

In this case, we find that even though input() does not go directly to eval(), it’s
still a security risk!

Brandon Wu Program Analysis 23 October 2024 65 / 98

Problems in Program Analysis: Code Reachability

The problem of code reachability has to do with determining whether or not there
is a given series of inputs that can cause some code path to execute.

def foo(person):
if isChappellRoanFan(person):

f()
elif isLame(person):

g()
else:

throw new Error("bad")

In this case, we are interested in whether the Error can be reached. It’s not clear,
but a sophisticated program analysis tool could know that not being a Chappell
Roan fan implies being a lame person, so the last condition is not actually reachable.

Brandon Wu Program Analysis 23 October 2024 66 / 98

A Commonality in Difficulty

The commonality in all of these problems is that they are all dependent upon the
control flow of a program.

Def The control flow of a program is the particular order in which it executes its
instructions.

Because of the Halting problem, control flow is very hard to know15! In a similar vein
to how we decided to solve the control-flow question of zero returns, we will restrict
ourselves to two questions:
• is it possible for a program to exhibit a certain control-flow behavior
• is it always the case that a program exhibits a certain control-flow behavior

We call these the distinction between these two questions a may versus must
analysis.

15Impossible, actually.
Brandon Wu Program Analysis 23 October 2024 67 / 98

Control-flow Graphs

To facilitate our ability to answer these questions, we turn to a data structure called
a control-flow graph, or CFG for short.
A control-flow graph is a kind of structure which basically describes all the paths
that a program might take. When an instruction is always followed by another, then
they appear in a single "block" together. When the instructions might branch (that is,
go one place or another), then arrows point towards the blocks that it might lead to.

x = True
y = 2

if x:
x = False

else:
y = 3

x = True
y = 2
if x:

x = False

y = 3

Brandon Wu Program Analysis 23 October 2024 68 / 98

Control-flow Graphs, cont.

Note that control-flow graphs can get pretty massive and complicated.

The important takeaway here is that control-flow graphs only predict program
behavior, they do not dictate it. Because the arrows just show where a program
might go, it doesn’t magically solve the Halting Problem16.

The second important takeaway is that there is always a way to turn a given
program to a control-flow graph. Let’s not worry about how that happens17.

16Another way to think about it is that a control-flow graph describes a state space which a program
may traverse over its execution. We cannot say for sure where it will go, but it must exist within the
space of the graph.

17As they say, this is an exercise left to the reader.
Brandon Wu Program Analysis 23 October 2024 69 / 98

Another Control-Flow Example

To make sure our foundations are clear, let’s look at one last example of a
control-flow graph.

x = 0

while x < 10:
x += 1

print(x)

x = 0

if x < 10:

x += 1

print(x)

Notably, we reduce the complicated while construct into a an if statement, which
leads to a node that points back to the if statement. This is a way of encoding the
behavior of a while loop, which is to constantly re-calculate the condition until it is
false.

Brandon Wu Program Analysis 23 October 2024 70 / 98

6 - Stages of Program Analysis: Dataflow
Analysis (bonus)

The Lifecycle of Static Analysis: Analysis

program text

token list

abstract syntax tree

abstract assembly / control-flow graph

start

profit!

lexing

parsing

IR generation

analysis

Brandon Wu Program Analysis 23 October 2024 72 / 98

Approximation

These problems all come with their own hardships. Due to what was discussed in
the last section, they are all impossible to solve completely, but several of them are
actually solvable via a Type B (allowed to be wrong) analysis, using the same
method.

A classic technique used in program analysis to obtain approximative 18 answers in
a finite amount of time is called dataflow analysis.

Before I can define it to you, I must give you an analogy.

18Life hack: you can successfully replace "incorrect" with "approximative" in so many different
places that it’s hilarious.

Brandon Wu Program Analysis 23 October 2024 73 / 98

An Analogy for Dataflow Analysis

Suppose you have a query you would like to solve on programs, which has many
possible answers. Further suppose that the number of possible answers is finite.
Suppose that you line them all up, one next to the other.

answer 1 answer 2 answer 3 · · · answer n

Program analysis is hard because information can change a lot, infinitely much in
fact, over the course of a program’s run-time. For instance, suppose that the
question is "how much memory is being used by the program?". You might pick an
answer n, then move to answer n− 2, then move to a different answer k altogether.
It’s possible to jump all around, in the limit of the program’s execution.
An observation can be made that, if you can order your answer in a way such that,
over the course of your analysis, you only ever change your answer by moving right,
you will always eventually terminate.

Brandon Wu Program Analysis 23 October 2024 74 / 98

Monotonicity

This is a roundabout way of describing what is known as a monotonic function,
which is a function which always "increases", according to some proper notion of
"increases". In this case, our monotonic function also has an upper limit, i.e. a point
beyond which it can no longer grow.

For dataflow analysis, we will make use of this kind of analysis to iterate over our
control-flow graph, constantly updating our answer, but only in a way that
"increases", and eventually caps out. If we can do that, then we will guarantee that
we will terminate.

This also usually makes our answers sometimes wrong, though.

Brandon Wu Program Analysis 23 October 2024 75 / 98

A Dataflow Example

For instance, consider the following control-flow
graph13:

We would like to perform an analysis known as
constant propagation on it, by noting which variables
are constant, i.e. never changed over the duration of
the program.

How do we do this? We simply march forward through
the CFG, and noting down which variables are
constant as we see them, starting with the empty set.

x = 1
y = 2

x = x + 2

return x

13Note that this one has a self-loop. This can happen, for example, from a while loop.
Brandon Wu Program Analysis 23 October 2024 76 / 98

A Dataflow Example

So for instance, first we traverse the entering
block, by simply penciling in x and y as we
see them get assigned to constants.

Once we finish, we now have the out-set for
the first block, which we can then use to
determine the other blocks.

x = 1
y = 2

{}
{x 7→ 1}

{x 7→ 1, y 7→ 2}

x = x + 2

return x

Brandon Wu Program Analysis 23 October 2024 77 / 98

A Dataflow Example

After following the highlighted edge, we end
up at the second block. Since we have some
information about what variables are
constant, we can carry that information here.

Then, we see that x is incremented by two,
and thus must be constant at 3 at the
conclusion of the block.

x = 1
y = 2

{}
{x 7→ 1}

{x 7→ 1, y 7→ 2}

x = x + 2
{x 7→ 1, y 7→ 2}

{x 7→ 3, y 7→ 2}

return x

Brandon Wu Program Analysis 23 October 2024 78 / 98

A Dataflow Example

But, now we need to follow the self-loop!
Something weird happens here.

There are two conflicting out-sets that are
going in to the second block. One is the one
we just computed, {x 7→ 3, y 7→ 1}, from the
output of the second block itself. The other is
{x 7→ 1, y 7→ 1}, from the original out-set from
the first block.

This means we have a conflict. x is constant,
but at two different values, coming in to the
second block.

x = 1
y = 2

{}
{x 7→ 1}

{x 7→ 1, y 7→ 2}

x = x + 2
{x 7→ 1, y 7→ 2}

{x 7→ 3, y 7→ 2}

return x

Brandon Wu Program Analysis 23 October 2024 79 / 98

A Dataflow Example

This must mean that x is not constant after all.

So we set the value of x to instead be ⊤,
which means "not constant". Note that this is
different than x not having a value, which
denotes not knowing if it is constant or not.

x = 1
y = 2

{}
{x 7→ 1}

{x 7→ 1, y 7→ 2}

x = x + 2
{x 7→ ⊤, y 7→ 2}

{x 7→ ⊤, y 7→ 2}

return x

Brandon Wu Program Analysis 23 October 2024 80 / 98

A Dataflow Example

Then, once we are assured that everything
looks good, we can proceed to the final block,
where we observe that we return x at a
non-constant value.

This means that we cannot optimize the
return value of this function after all.

Different story if we had returned y!

x = 1
y = 2

{}
{x 7→ 1}

{x 7→ 1, y 7→ 2}

x = x + 2
{x 7→ ⊤, y 7→ 2}

{x 7→ ⊤, y 7→ 2}

return x
{x 7→ ⊤, y 7→ 2}

{x 7→ ⊤, y 7→ 2}

Brandon Wu Program Analysis 23 October 2024 81 / 98

Generality of Dataflow

This is a contrived example, but the really interesting thing is that dataflow analysis
works for any control-flow graph.

The process seemed somewhat silly, as we could determine with our eyes that x
was non-constant, but for very complicated control-flow graphs this is not an
obvious fact at all. Programmatically, we can still run this same analysis, however.

This analysis is also guaranteed to terminate, due to the monotonic reasons we
stated earlier. The actual reason for this is that dataflow analysis strictly traverses
up a lattice.

Brandon Wu Program Analysis 23 October 2024 82 / 98

Constant Definitions Lattice

{x 7→ ⊤, y 7→ ⊤}

{}

{x 7→ n, y 7→ ⊤}

{x 7→ n, y 7→ n′}

{x 7→ ⊤, y 7→ n′}

{y 7→ ⊤}

{x 7→ n} {y 7→ n′}

{x 7→ ⊤}

Brandon Wu Program Analysis 23 October 2024 83 / 98

Climbing the Lattice

The diagram looks scary, but the key thing is just that it assigns each variable a
value of either no value, any constant n or n′, or ⊤, which means "not constant".

assigned 0 times assigned once assigned more
than once (⊤)

Edges go from sets to ones which have either added a new variable at a constant,
or that have upgraded a variable from a constant to the not-a-constant symbol ⊤.
This represents the gaining of information, of either a variable being declared as a
constant, or a variable being discovered as not-a-constant.

• For instance, we started at {}, and then went to {x 7→ 1} when we read x = 1.
• Or, we went from {x 7→ 1, y 7→ 2} to {x 7→ ⊤, y 7→ 2} upon seeing that x was set

as two different constants, along two different paths to the block.

Brandon Wu Program Analysis 23 October 2024 84 / 98

Monotonicity in Constant Definitions

The main thing to take away here is that every arrow goes up. We talked earlier
about putting answers on a number line, which is represented in terms of the
lattice’s height, here. No matter what edge you pick, you go up some amount, which
means we must terminate.

We can’t go down, because it’s impossible to update your worldview to either
remove a variable from the set, or to set a variable from not-constant to constant.
Once you know something about a variable, you can’t go back.

Brandon Wu Program Analysis 23 October 2024 85 / 98

Approximation of Dataflow

I mentioned earlier that this analysis is necessarily
wrong, however.

The reason comes out of the fact that the control-flow
graph is just how the execution of the program might
go. In reality, it’s quite possible that at runtime, we
never enter the self-loop, meaning that x really is
constant.

But, without running the program, we have no way of
knowing, so we assume that x is updated at some
point. This makes our knowledge necessarily possibly
wrong, but a good approximation.

x = 1
y = 2

x = x + 2

return x

Brandon Wu Program Analysis 23 October 2024 86 / 98

On Dataflow Analysis

This was a really simple example that I hoped you might be able to understand.

Dataflow analysis in general is a very powerful technique, however, and admits
many other analyses, many of which are quite useful. These include:
• available expressions - is there a definition of this exact expression already at

this program point? useful in optimizing away redundant computations.
• reaching definitions - what definitions of a variable can reach a given program

point? useful in building use-def chains (i.e. "goto definition" in IDEs)
• taint tracking - can data from undesirable sources reach some sensitive

program point? very useful in security applications.

The rabbit hole goes deep. This one is simple, but this is a bread-and-butter
technique in program analysis.

Brandon Wu Program Analysis 23 October 2024 87 / 98

Dataflow Analysis and Semantics

Dataflow analysis is a foundational technique that forms the bread and butter of the
program analysis toolbox. Despite being a technique which has been used for
decades, it is still relevant today. All static analysis tools do some form of dataflow
analysis.

In a sense, though, it can be viewed as a "lower level" analysis. We elided a lot of
details in this presentation, but a proper dataflow analysis often entails breaking
down a program into its most base representation. This tends to lose a lot of the
original structure of the code – nobody writes a CFG when programming.

Brandon Wu Program Analysis 23 October 2024 88 / 98

7 - Extra Considerations

Extra Considerations

By this point, we have seen much on the implementation of SAST tools, in the
tradeoffs that have to be made in order to solve an inherently impossible problem.

When it comes to appraising the fit of a SAST tool, there come considerations which
are not strictly captured by the program analysis itself.

There are considerations of speed, developer friction, ease of use, and
convenience, as well.

Brandon Wu Program Analysis 23 October 2024 90 / 98

Extra Considerations: Speed

Speed is the name of the game when it comes to code scanning, oftentimes.

To truly enable a shift left perspective on security, it is often necessary to meet the
developer where they are, such as in their IDE, or in their CI/CD pipeline.

To that end, a SAST tool must be able to scan code quickly, to minimize time spent
blocking developers.

Technically, this can be something of a challenge, as analyzing a project can have
as bad as quadratic or cubic time complexity in the size of the input program.

Brandon Wu Program Analysis 23 October 2024 91 / 98

Extra Considerations: Speed, cont.

A standard way to mitigate this is to do partial analysis19, which entails only
scanning relevant files which have been changed, in a given pull request.
Unfortunately, this has potential drawbacks. Consider the following simple program:

def foo(x):
return sink(x)

def bar(x):
return safe(x)

def qux():
- return bar(input ())
+ return foo(input())

If these code blocks are in different files, we wouldn’t know that the change to qux
is potentially dangerous unless we also scanned the first file.

19I made this precise term up.
Brandon Wu Program Analysis 23 October 2024 92 / 98

Extra Considerations: Ease of Use

Another important consideration is in ease of rollout.
Program analysis, as an approximative art, is always looking for ways to obtain more
correct results.
In terms of code scanning, means that one need not restrict themselves to just
source code analysis, but also taking into consideration the precise build context.
This is best surmised by the following diagram:

program compiled program B

compiled program A

compiled program C

. . .

. . .

result B

result A

result C

compilation

compilation

compilation

compilation

compilation

execution

execution

execution

Brandon Wu Program Analysis 23 October 2024 93 / 98

Extra Considerations: Ease of Use, cont.

In terms of correctness, build context is
uncontroversially more correct.

The difficulty comes with set-up.
Knowing the precise build context
requires project-specific tuning, and often
requires a more complex infrastructure.

When rolling out a scanner to a large
organization, potentially hundreds or
thousands of repositories, this can be a
significant barrier to entry.

Brandon Wu Program Analysis 23 October 2024 94 / 98

7 - Conclusions

On Limitations and Growth

Part of growing up is learning that your guardians are not perfect.

Similarly, part of growing up as a security professional is learning that your tools,
too, are not perfect. Throughout this lecture, we have seen that not only are they
imperfect, they are fundamentally flawed.

This is not meant to inspire despair, however–quite the opposite. By understanding
more the limitations of our tools, we can better understand when they are useful,
and when they are not.

Brandon Wu Program Analysis 23 October 2024 96 / 98

On the Future

Security is a war, and in the words of the famous G.I. Joe, "knowing is half the
battle".
I hope that this presentation has instilled a little bit more knowledge in you, and a
confidence in your ability to navigate the world of application security, SAST
scanning, and static analysis.
The volume of code being written is only increasing, and the need for better
guarantees about its security, for scaling up our ability to analyze code, and for
enhancing our knowledge of the code that we run and deploy each day is only
increasing.
Today’s world of application security is not going to be the same as tomorrow’s.
Tomorrow’s advances in generative AI, formal methods, and developer tooling are
promising, but hopefully this presentation can help to keep track of how they can
apply to today.
Here’s to making static analysis fast, fruitful, and frictionless.

Brandon Wu Program Analysis 23 October 2024 97 / 98

Thank you!

	The State of Software
	Program Analysis
	Implementing the Impossible
	Stages of Program Analysis: Lexing
	Stages of Program Analysis: Parsing
	Stages of Program Analysis: IR Generation
	Stages of Program Analysis: Dataflow Analysis (bonus)
	Extra Considerations
	Conclusions

