
"hyperspace fish bone" by jurvetson is licensed under CC BY 2.0.

What’s In Your AI Code?

Darren Meyer, Staff Research Engineer — 26. June 2024

What do we mean
by “AI Code”?

Librarie
s

Model

Confi
guratio

n

Your cool new AI-enabled product

Your c
ode

How dependencies
work
Package Managers and Runtimes tend to operate
completely decoupled, like ships passing in the night

1. Developer starts a new project that uses a couple of
dependencies

2. Developer creates a manifest file to declare the two
direct dependencies (requirements.txt, package.json,
pom.xml, etc.)

3. Build system runs package manager and the direct
dependencies bring along several other transitive
dependencies

4. Package manager copies the files in a directory

5. Runtime/compiler loads dependencies as needed
during execution

Compiler / Runtime

Package Manager

Things get out of sync
It is unavoidable

• Developers import new dependencies without
updating the manifest file (possible in python,
Javascript, scripts etc)

• In some cases dependencies are there in the
environment (like global python or node packages)

• In some cases dependencies are for testing/dev
(example: storybook in Javascript)

• In some cases dependencies are removed from the
code but not from the package manager manifests

Your manifest can lie

• “Just pip install a dep”

• Baselines won’t function without the right version

• You’ll never see it in a manifest or lock file

• SCA / dep tree tools (usually) won’t see it

OpenAI’s Baselines library

Models suggest this
pattern often

The Phantom Dependency Menace

• Dependencies that are either “provided”
by the system are assumed to be
downloaded manually

• Scripts, containers, and so on

• Often depend on the target platform

• Dependencies that are required for
building an application that are not
supposed to be used at runtime but are
actually used

• Very common in NPM: see storybook for
example

Lots of AI Code

Security Challenges

• False sense of security — tools can’t see what’s not
in a manifest, so you miss risks that might be
relevant

• Inaccurate compliance data — your SBOMs aren’t
reporting everything in use. Auditors are unhappy if
they catch you

• Dev / prod differences — can’t rely on the version I
see in dev pipelines being the same thing that’s in
production

Why are tools blind?
Many tools trust the manifest or lock files, and don’t
account for the ways those can lie

1. Phantom Dependencies (false negatives)

• Brought by the system, runtime or other scripts

2. Mis-used dependencies (false negatives)

• Dependencies brought as “test/dev” used in runtime

3. Direct use of transitives (unreliable fixing)

• Dependencies brought in as transitives and used
directly without knowledge

4. Unused dependencies (false positives and noise)

• Dependencies brought in the manifest but not used
by the code

Program Analysis
FTW
What matters is which packages the code actually
uses

1. Source of truth is actually the source code

a. Analyze the code

b. Create an Abstract Syntax Tree

c. Analyze types and call flows

d. Create a call graph

2. Correlate the dependencies used by the code with
the dependencies fetch by the package manager or
available in the file system

3. Create a unified view

Example: Python

Use the source

1. Import dependency ▶ Call graph ▶ “Is it used?”

a. Repeat for all it’s dependencies (transitive)

2. Compare dependency graph with versions installed
on system and defined in manifest

3. Correlate and unify results

a. Makes accurate SBOM and VEX possible

The Shameless Pitch

• Accurately identify all dependencies in use, even if
they’re “phantom”

• Provide clear mapping and pathway data

• What uses it?

• Directly vs. Transitively?

• Find out when transitive deps are being directly
used

• Avoid the noise to devs by knowing whether a risk
is actually along a call path

Greetz and Thanks
Dimitri Stiladis, Henrik Plate

original research, program analysis design

Jamie Scott
models, reviews

Antonella Commiato and Pia Rodil
Food and logistics support for this meeting

HiveWatch
Hosting and facility

OWASP Membership and OWASP LA
None of this is possible without the commitment of members and leaders at OWASP

Many, many more…

