{df}

Mike Larkin
Deepfactor, Inc.
mlarkin@deepfactor.io

For more AppSec

information and resources:

- Visit deepfactor.io

- Sign up for free trial of
Deepfactor Application
Security

1 @ G{}{}{}@;@Y@rd
} } } } } } } } } }
050400090000 0400000,
G QHGHGHGHGQGHGHGHG
Gﬁ@j - }i}i}
Eadl
13 iy
sl SINETIO 7,0
{} Ol Searg OF }”{}lf ¢
320 19935

' }A%A,
{} {} l }U{}f}]
320 19004
040 30040,
0 OO
{}3{}} 1’{} 3’{}{
o0 I
} } } } } } } } } }
050400090000 0400000,
N f{}, Iidide)
G,GAG,G,GIG”GfGYGEGT

https://www.deepfactor.io/
https://cloud.deepfactor.net/signup

/ / Agenda

> Overview (~20 minutes)

> Types of reachability analysis (~10 minutes)

> Call graph analysis exercise (~10 minutes)

> Dynamic/runtime analysis exercise (~10 minutes)
> Results comparison (~10 minutes)

> Conclusion / Q&A (~10 minutes)

df

Overview

#

{df}

[NY
1L

3

[N Y
{

0
}}
s
}

[NYU N Y
{r A

31030

ﬂ

31030

{; 34 3
{ { {
U A

Jada
ROX
450¢
0
070
o
1UgY
000
}}}
900,
RON
450¢
g
ROX
450¢
0
ROX
gJ4°
199
)

UNUSNY
{y 3{; 54

3

{{{{{{{{

ﬂ

3 3

{y 31
{ {
{y 31

¢

}}
{}r{
{}1{1
}
3, Te(
1

Ja0g
30
090¢
gy
999
090;
gy
R

) 090;

050,

3dg¢

090¢
gy

999

090¢

1900

999

g7g"

10!

330

g,

31030707030 10

ﬂ

3

}
}
{{{{{{}{{
}
}}
}a
}

r]

31030103

{{{{{{{{

3

-

I

1
i

3

lf IJ'
rl r{ ‘l{

Ualals

g,
1 J ’L

¢ ¢
19000000

{
{

}a }}
} }}
4 }}
} 1104
} }}
4 }}
} } 18,
}a }}
} }}
4 Faad
{} {}{}{
} }}
43 }}
} I3,
} }}
4 }}
} }}
} }}
4 4l 3
} Yo}
1% 14

}
tf {}: i
1

ooty

[NLS
{

(
1344
(

A7 3

l'

}a
}
}
}
}
}
}
(i
}
}
{}r
}
}
}
}
}
}
}
}
gt
154

// About Me

> Co-founder and CTO at Deepfactor
« We make software to help people prioritize vulnerability remediation

> Adjunct faculty at San Jose State University
- Computer Engineering (CMPE) MS degree program
 Virtualization Technologies, Software Security, and Operating Systems

> Active open-source contributor
« OpenBSD (hypervisor, device drivers, memory/device management, ACPI)

df

// Goals Of This Workshop

> This workshop has several goals; at the end of the workshop, you should -

df

Know what reachability analysis is, and why you should care about it

Know why reachability can help you prioritize vulnerability remediation

Understand the different types of reachability analysis tools

Learn where you can reach out for help in this area later

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

5

// If You Want To Follow Along ..

> I will be doing 3 examples today that you can also do yourself

- ... iIf you want. Otherwise, sit back and relax and enjoy the beer and food

> The list of what you will need to install is pretty simple:
* Trivy
- Go
- Java
- Gradle (if you want to try the Java example)

> For the Go example, you'll need some Go app (of your choice)
« I'm going to demo JIRA-CLI : https://github.com/ankitpokhrel/jira-cli

df

https://trivy.dev/
https://go.dev/
https://openjdk.org/
https://gradle.org/

//Vulnerability Reachability Analysis

> Code that is contains vulnerabilities is bad
> Code that contains vulnerabilities used in your application is worse
> How do you know if some code you are using is vulnerable?

> Better yet, how do you know you’re even using the vulnerable code at all?

> These questions are what we are going to focus on today

df

//Vulnerability Reachability Analysis

> We will start by talking about reachability
> We'll then talk about what vulnerabilities are, and how they are managed

> Then we will look at tools you can use to catalog what CVEs you might have in
your code

> Finally, we’ll conclude with some short examples with open source tools to do
your own reachability analysis

df DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

8

f f

f l' f

rrrrr

rrrrrrrrr

I
}
g
I
%
#O#* # }
}
}
}
}
}

\\\\\\\

// Reachable Code

> How do you define reachability?

> Certainly, code that your program executes is, by definition, reachable

> What about code that is packaged with your program but never loaded?

> What about code that is loaded by your program but never executed?

> What about code sitting on the same machine/container that could theoretically
be launched?

df

// Reachable Code

> “Code that is packaged with your program but never loaded”

> I'd suggest getting rid of that code

> There are tools to help you locate such code

=~

{d'F} DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED. 11

// Reachable Code

> “Code that is loaded by your program but never executed”

> For example
- Shared library dependencies created by the linker but not used
- Java apps doing Class.forName(...) but never using any methods in the class
- dlopen(...) but never using the thing you loaded

> This might happen in applications that support things like plugins, but then the
loaded module isn’t ever exercised

> Code like this is reachable!

df

// Reachable Code

> “Code sitting on the same machine that might be launched”

> Out of scope (for this talk...)

> This is sort of like the earlier example though; if it's not used, why is it there?

> No need to leave lolbins laying around for an

"That's out of scope” |
attacker -Said no attacker ever \
{d'F} DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED. 13

// Reachable Code

> If we distill the previous scenarios down to the two important ones ...
« Code directly executed by your program

- Code loaded into the address space/interpreter by your program (maybe used, maybe
not)

> How do you know which functions/methods fall into each category?

> Said a different way, how can you compile a definitive list of functions and
methods that are reachable, according to the previous definitions?

df

// Reachability Analysis

> Before we discuss “how”, let’s talk about “why”
> Why is creating this list important?

> Simple answer -

Reachable code that contains vulnerabilities should be remediated with priority

df DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

15

// Reachability Analysis

>

If you have several vulnerabilities to fix...

» Prioritize fixing the ones that are reachable, with known exploit PoCs first
* Next focus on the other reachable ones

- Then focus on the rest, based on severity

> All that advice depends on knowing what is reachable

df

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

16

// Reachability Analysis

> There are generally two types of reachability analysis tools

- Tools that scan source code and generate a call graph based on syntax analysis
> foo().bar().baz() -> "“methods foo, bar, baz are reachable”

- Tools that monitor the program after it is built, and watch what is loaded or executed
> Profiling, library call interception, etc

> Each of these approaches can produce a list of reachable functions/methods

> Each approach has strengths and weaknesses

df

{} {} {} {} {} {} {} {} {} {}
}}}}}}}}}}
}%}%%}%%}%
050405040500 040 040
}}}}}}}}}}
}%}%%}H%}%
{} {} {} {} {} {} {} {} {} {}
Vulnerabilities & %%%%%%%%%%
Bad Code ﬁ}ﬁﬁ}}%%}%
{} {} {} {} {} {} {} {} {} {}
}}}}}}}}}}
S
{ {]{ {n{n{n{n{ { {
s 390993000007079%0%
}}}}}}}}}}
050405040500 0400 040
0500040500070 0 00040
1039090%303040040 5
" R ARARARAR AL ARAVAUAL
oo Gfﬂfﬂfﬂfﬂfﬂfﬂf

// Let’s Talk About Software Vulnerabilities

> Vulnerable code is everywhere.
* You're using it
 I'm using it
 Even my dog is using it

> Let’s talk about where vulnerable code comes from

{df}

T e T e T e T e T e T e T o W P NN

(CEPRY N G GO I G I G Y I Y I G G A G S G G N G B G

// Let’s Talk About Software Vulnerabilities

> What causes a vulnerability?

Are vulnerabilities caused by incorrect (buggy) code?

Is correct code vulnerability free?

Is vulnerability free code always correct?

Are vulnerabilities in your program always the result of code you wrote?

df

// Stupid Example

What do we think about this?
Is this correct (bug free)?

Could this code have a vulnerability?

{df}

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED. 21

// Stupid Example #2

What do we think about this?
Is this correct (bug free)?

Could this code have a vulnerability?

{df}

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED. 22

// Stupid Example #3

What do we think about this?
Is this correct (bug free)?

Could this code have a vulnerability?

{df}

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED. 23

// Yes, Those Were Stupid

> Type confusion
« Misunderstanding the meaning of a value

> Corner cases
* Not checking for all error conditions

> Not checking return values

> Undefined behavior

- Of course, nobody here would ever make such
mistakes...

{df}

-

LOST

CHILDREN
WILL BE

N i —

| TAUGHT

THE

C

PROGRAMMING

l

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED. 24

:,J-HH-‘,-'-\H-\,-*-\rﬁrﬁﬁ-‘rﬁ-\’h\rﬂ-\ﬁﬁﬁmﬂmﬁﬁﬂmﬂrﬁﬁmﬁmﬂmﬁrﬁﬁﬁﬂ
SRV CAURY AL G G GV G G G I G GO A G I GO GO S G GOV I Y B)

. -l pr S T P — g S S - P — S P — -l S S -l pr S T P —

// Not So Obvious Example

https://lwn.net/Articles/342330

{df}

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED. 25

// Not So Obvious Example

https://lwn.net/Articles/342330

{df}

struct sock *sk = tun->sk;

if (!tun)

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED. 26

//Why Did We Look At These Stupid Examples?

> These examples were shown to illustrate a few points

Even simple mistakes or accidents can cause a vulnerability

Vulnerabilities are everywhere

They are not going away

You probably didn’t write the bad code yourself

We need a way to track them and prioritize
remediation

{d'F} DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

27

// Bad Code Is Out There

> We'll never be able to get rid of bad code

> Mistakes, laziness, apathy, and inexperience can all contribute to the problem
 (Ehm, memory unsafe languages, too)

> Even if you write 100% perfect bug-free, vulnerability-free code, you are still
likely to step on landmines

- Importing third party code/dependencies
- Downstream refactoring
- Code being used in unexpected ways

df

// CVEs

> Known vulnerabilities can be assigned a CVE number for tracking
- Each CVE is assigned a severity
- Each CVE can contain information about the vulnerability
- Each CVE can contain information about “fixed-in” versions
* ... plus arbitrarily more information ...

> Who assigns CVEs?

> What are they used for?

> Who decides the severity and other information included in the report?

df

// Example Of A Meaningless CVE

Vulnerability Details : CVE-2021-41340

Windows Graphics Component Remote Code Execution Vulnerability

Published 2021-10-13 01:15:13 Updated 2023-08-01 23:15:24 Source Microsoft Corporation

Vulnerability category: Execute code

Exploit prediction scoring system (EPSS) score for CVE-2021-41340

Probability of exploitation activity in the next 30 days: pPaAEYA

Percentile, the proportion of vulnerabilities that are scored at or less: EPSS Score History EPSS FAQ

CVSS scores for CVE-2021-41340

Base Score Base Severity CVSS Vector Exploitability Score Impact Score
6.8 MEDIUM AV:N/AC:M/Au:N/C:P/I:P/A:P 6.4
HIGH CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H 5.9

HIGH CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H 5.9

// Better Example

Vulnerability Details : CVE-2023-32235

Ghost before 5.42.1 allows remote attackers to read arbitrary files within the active theme's folder via /assets/built%2F..%2F..%2F/ directory traversal. This occurs
in frontend/web/middleware/static-theme.js.

Published 2023-05-05 05:15:09 Updated 2023-05-1114:19:32 Source MITRE View at NVD¥, CVE.org¥

Vulnerability category: Directory traversal
Exploit prediction scoring system (EPSS) score for CVE-2023-32235
Probability of exploitation activity in the next 30 days:

Percentile, the proportion of vulnerabilities that are scored at or less: EPSS Score History EPSS FAQ

// CVEs (cont’d)

> How do you know if you're vulnerable to a CVE?

> To answer the question, it's important to know what components you are using
in your application

« After all, if you aren’t using component XYZ at all, then you’'re certain to not be subject
to any of its vulnerabilities

> Ok, so how do you know what components you are using in your application?

df

// Imports

> If you’'re lucky, your language or
compiler might tell you

« For example, go.mod

> The developer might also tell you
- Gradle or .pom files
- package_lock.json

> Or maybe you can scan your program
and try determine what it uses, if you
don’t know

require (
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.

github.
github.
github.
github.
github.
github.
github.
github.
github.
github.

com/AlecAivazis/survey/v2 v2.3.7
com/atotto/clipboard v0.1.4
com/briandowns/spinner v1.23.0
com/charmbracelet/glamour v0.6.0
com/cli/safeexec v1.0.1

com/fatih/color v1.15.0
com/gdamore/tcell/v2 v2.6.0
com/google/shlex v0.0.0-20191202
com/kballard/go-shellquote v0.0.0-201851
com/kentaro-m/blackfriday-confluence v0.0.0-2022
com/kr/text v0.2.0

com/mattn/go-isatty v0.0.19

com/alecthomas/chroma v0.10.0 // indirect
com/alessio/shellescape v1.4.1 // indirect
com/aymanbagabas/go-osc52/v2 v2.0.1 // indirect
com/aymerick/douceur v0.2.0 // indirect
com/cpuguy83/go-md2man/v2 v2.0.2 // indirect
com/creack/pty v1.1.18 // indirect
com/danieljoos/wincred v1.2.0 // indirect
com/davecgh/go-spew vl1.1.1 // indirect
com/dlclark/regexp2 v1.10.0 // indirect
com/fsnotify/fsnotify v1.6.0 // indirect

// Example - Trivy
> Trivy can be used to scan a program’s dependencies

« Plus container images, filesystems, etc

> Let’s scan a container

1df}

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

34

https://github.com/aquasecurity/trivy

/ / SBOMSs

> Software Bill Of Materials

- Similar to a BOM for a physical thing like a car, toaster, or television

 Lists all the things required to build the “thing” (software in this case)

> Instead of nuts, bolts, flanges, and circuit boards, we have lists of software packages and their
versions

« Can be described in various formats (SPDX, CycloneDX)

> Biden executive order 14028
« https://www.ntia.gov/sites/default/files/publications/sbom_myths_vs_facts _nov2021_0.pdf

df DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

35

// SBOMs (cont’d)

>

df

With an SBOM, an organization is empowered to ...

- Answer the question "Am I affected?” more easily when a vulnerability is discovered
> Minutes or hours, not days or weeks later

- Determine which components are affected

- Determine roadmaps for remediation, when coupled with reachability insights

// SBOMs (cont’d)

> SBOM content can be correlated with CVE databases

> This would give you a list containing two things

« Components used to build your application
« Vulnerabilities present in those components

> Surely that be enough to prioritize what gets fixed first, right?

df

libexpatl
libldap-2.4-2
libtinfob
python2.7-minimal

libss2

libcurl4-openssl-dev

libidn2-0

org.springframework.b

oot:spring-boot

libssh2-1
libcé

libwindO-heimdal

org.apache.httpcompo

nents:httpclient

// Sample SBOM

0.57%
1.1%
0.1%

4.04%

0.07%

17.09%

0.35%

0.04%

0.05%

2.15%

1.37%

0.16%

ninja-js:0.0.1

balancereader:0.0.1

transactionhistory:O...

ninja-js:0.0.1
ninja-js:0.0.1
fioapp:0.0.2

ninja-js:0.0.1

transactionhistory:O...

transactionhistory:O...

transactionhistory:O...

userservice:0.0.1

transactionhistory:O...

public.ecr.aws/dee...
public.ecr.aws/dee...
public.ecr.aws/dee...
public.ecr.aws/dee...
public.ecr.aws/dee...
public.ecr.aws/dee...

public.ecr.aws/dee...
public.ecr.aws/dee...

public.ecr.aws/dee...
public.ecr.aws/dee...

public.ecr.aws/dee...

public.ecr.aws/dee...

OS Package
OS Package
OS Package
OS Package
OS Package
OS Package

OS Package
Dependency

OS Package
OS Package

OS Package

Dependency

debian
debian
debian
debian
debian
ubuntu
debian
jar

debian
debian

ubuntu

jar

2.2.6-2+debl0u4
2.4.57+dfsg-3
6.2+20201114-2
2.7.16-2+debl10ul
1.44.5-1+debl0u3
7.58.0-2ubuntu3

2.0.5-T+debl10ul
2.3.1.RELEASE

1.9.0-2
2.31-13+debllu2

7.5.0+dfsg-1

4512

1-20 of 784

// Sample SBOM

libexpatl
libldap-2.4-2
libtinfo6
python2.7-minimal
libss2
libcurl4-openssl-dev

libidn2-0

org.springframework.b
oot:spring-boot

libssh2-1
libcé

libwindO-heimdal

org.apache.httpcompo
nents:httpclient

0.57%
1.1%
0.1%

4.04%

0.07%

17.09%

0.35%

0.04%

0.05%

2.15%

1.37%

0.16%

ninja-js:0.0.1

balancereader:0.0.1

transactionhistory:O...

ninja-js:0.0.1
ninja-js:0.0.1
fioapp:0.0.2

ninja-js:0.0.1

transactionhistory:O...

transactionhistory:O...

transactionhistory:O...

userservice:0.0.1

transactionhistory:O...

public.ecr.aws/dee...
public.ecr.aws/dee...
public.ecr.aws/dee...
public.ecr.aws/dee...
public.ecr.aws/dee...
public.ecr.aws/dee...

public.ecr.aws/dee...
public.ecr.aws/dee...

public.ecr.aws/dee...
public.ecr.aws/dee...

public.ecr.aws/dee...

public.ecr.aws/dee...

OS Package
OS Package
OS Package
OS Package
OS Package
OS Package

OS Package

Dependency

784 Vulnerable
Components?!?

debian
debian
debian
debian
debian
ubuntu

debian

jar

2.2.6-2+debl0u4
2.4.57+dfsg-3
6.2+20201114-2
2.7.16-2+debl10ul
1.44.5-1+debl0u3
7.58.0-2ubuntu3

2.0.5-T+debl10ul
2.3.1.RELEASE

1.9.0-2
2.31-13+debllu2

7.5.0+dfsg-1

4512

1-20 of 784

// Tidal Wave

> That’s not solvable

> You're going to get crushed by the neverending wave of CVEs

> Let’s fix the problem

df DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

40

f f

f l' f

rrrrr

rrrrrrrrr

I
}
g
I
%
#O#* # }
}
}
}
}
}

\\\\\\\

// Call Graphs

> There are tools that can tell you what code is reachable in your application at
build time

> These tools scan your source code and produce a graph of “what calls what”
> That graph is then traversed to create a list of reachable code paths

> The hope here is that by knowing what is possibly callable, we can define the list
of reachable code

> With that information in hand, we should be able to prioritize remediation tasks

df

// Call Graphs

> A compiler analyzes your code during build
and creates a syntax tree

> Some nodes in this tree can be call sites
(locations where program flow transitions
from one function to another)

> Call sites can be cataloged to create the
“what calls what” list

1df}

// Call Graphs

> In this example, we know that foo calls bar
and bar calls baz

> Assuming foo is called from somewhere
else, then our list of reachable code
consists of

- foo
* bar
- baz

1df}

// Call Graphs

> This list can help us prioritize remediating
any CVE that includes one of these
functions

- Eg, “"A remote code execution vulnerability
exists in libFooBarBaz.so if the baz() function
is called.”

1df}

// Call Graphs

> A different example

> What can we say about the reachability of
“hamburger”?

> It's not called from anywhere

> Is it reachable?

1df}

printf (“hello”) ;

hamburger ()
{

}

// Call Graphs

> Language complexities make it difficult to
catch all the cases

* Function pointers
» Reflection based invocation
« Function names not known at compile time

> Is bar() called here? What about baz()?

> Are either of them or both reachable?

1df}

if (some param) ==

else

ptr();

ptr = baz;

ptr = bar;

42

// Call Graphs

> What can we say about the
reachability of various code here?

> Is any code even executed from class
“name” in this example?

> It's difficult to get a complete picture
of what’s going if all you have to look
at is the source

1df}

public void myMethod (String name)

{

Object o =
class.forName (name) ;

// Call Graph Example

> I'll be showing how to produce a call graph from a Go application using
‘callgraph’

> This tool should work against any Go application for which you have source

df DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

49

https://github.com/golang/tools/tree/master

Runtime Reachability

Analysis

{df}

{

4

{y <A

15

{

¢

{y <A

4

{

¢

{; A

54

(1

{{{{{{{{{{

Ga0a030303070.0G30 41

{
{

{
{

{
{

{
{

{
{

{
{

{
{

{
{

}a
3
g
1Y
3
g
1Y
0

%
)
3
g
1Y
3
g
1Y
3
g
32

{
{

{
{

}
J,
)
)
3,
)
)
9

}}
)
3,
h)
)
J,
)
)
3,
)
}

} }} g,
31011
GaUa030,303070,030 41
1390%303020405850,!
Ga03030,0703070 30

{{{{{{{{{{

Ga0a030303070.G30 41
f

{r -4

i

1 1
o

{
{

(
5
A

{
‘f
i

{
g
A

{
‘f
i

%

35
}
}
}a
}
4
}a
}
}
¢
G
}
}
}a
}
}
}a
}
4
}a
f@f@

}}}}}}}
}}}}}}}
}}}}}}}
}}}}}}}
}}}}}}}
}}}}}}}
}}}}}}}
}}}}}}}
}}}}}}}
}}}}}}}
Ja0ataGagatads
}}}}}}}
}}}}}}}
}}}}}}}
}}}}}}}
}}}}}}}
}}}}}}}
}}}}}}}
}}}}}}}
badada@adn Said
VA0

5 l.f
S A

// Runtime Reachability

> Tools that use runtime reachability analysis create the list of reachable code by
examining the program while it runs

> These tools generally do not look at source code, although they may, for
additional context (eg, if the tool also produces SBOMs)

> By monitoring what is used by the program, the list of reachable code can be
created

df

// Runtime Reachability

> Since the list of reachable code is defined by what is used during monitoring,
care must be taken to ensure the system under test is exercised fully

> Tools employing runtime reachability can have different granularities
« Function level
* Module level

> Function level tracing gives more specificity but can produce substantial output

> Module level tracing omits some specificity and assumes “module loaded” means
“code in that module is reachable”

df

// Runtime Reachability

> How do these tools work?

> Some intercept library calls to monitor when specific functions are called

> Some use traditional profiling techniques (periodic stack sampling)

> Some emulate or partially emulate the program’s execution to monitor calls

> Each approach is slightly different but all fall under the category of runtime
analysis

df

// Runtime Reachability Example

> I'll be showing how to generate a list of called/used Java classes at runtime using

a small bytecode rewriting agent

« The agent can be found here:

1df}

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

54

https://github.com/deepfactor-io/reachability-workshop

Putting It All
Together

Reachability + Prioitization

#

{d'F} DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVERR

// Recap

> Ok, so at this point we’ve done the following

- Scanned our application and produced an SBOM

« Using the SBOM, correlated which CVEs we might be vulnerable to based on the SBOM
contents

- Performed a reachability analysis exercise on our code which gave us a list of modules
or functions used

> How do we put all this together to arrive at a prioritization order?

df

// First Step — Code-To-Module

> Let’s pretend that we have built a list
of reachable code that looks like this

« The list could have been created using
either approach (call graph analysis or
runtime analysis)

> What's next?

{df}

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED. 57

// First Step — Code-To-Module

> We need to get from this list of
modules to something that matches
what we have in our SBOM

> Remember, CVE lists are often sourced
from the software vendor and thus will
be using vendor package names

« Eg, “libyummy-1.2.3p1" not
“/usr/lib/libyummy.so”

{df}

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED. 58

// First Step — Code-To-Module

> Assuming you have a package
manager, the reverse file mapping
capability is useful here

 rpm —gf
« dpkg -S
- apk info --who-owns

> P.S. This is one reason a package
manager is important ...

{df}

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED. 59

// Second Step — Module-To-CVE

> Now that we have the list of modules,
a query against the list of CVEs we
obtained previously can be made

- grep, sed, awk, jq, whatever...

« Can add thresholds or ordering in this
step, based on your organization’s appsec
policies

> Note: Your own executable/class
probably won’t be packaged this way

- And even if it was, it would be you
issuing CVEs for it anyway

{df}

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED. 60

// Second Step — Module-To-CVE

> Sometimes the CVE text will tell you
definitively which function is bad

> Most of the time you need to be
content with just assuming if you used
anything in the module that you should
throw it out or upgrade

« Vendors are disincentivized to provide
real useful information

{df}

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED. 61

// Second Step — Module-To-CVE

> In the end, we've produced the
following

- A list of CVEs ...

... applicable to modules we have in our
SBOM

- ... that we provably used code from in our
program

> Using this approach, we now have a list
of the "most important” CVEs

{df}

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED. 62

// Final Step

>

>

Of course, you could take this further

- Further refine the list to prioritize CVEs with known public exploits

EPSS score is a way of tracking this

- “Is an exploit available?”

- “What is the likelihood of an exploit becoming available in the next 30/60/90 days?
- Some tools incorporate EPSS into their severity ranking

> VEX enhancements to CVEs

df

- Sometimes more information can be gleaned

Conclusion

#

{df}

[NY
1L

3

[N Y
{

0
}}
s
}

[NYU N Y
{r A

31030

ﬂ

31030

{; 34 3
{ { {
U A

Jada
ROX
450¢
0
070
o
1UgY
000
}}}
900,
RON
450¢
g
ROX
450¢
0
ROX
gJ4°
199
)

UNUSNY
{y 3{; 54

3

{{{{{{{{

ﬂ

3 3

{y 31
{ {
{y 31

¢

}}
{}r{
{}1{1
}
3, Te(
1

Ja0g
30
090¢
gy
999
090;
gy
R

) 090;

050,

3dg¢

090¢
gy

999

090¢

1900

999

g7g"

10!

330

g,

31030707030 10

ﬂ

3

}
}
{{{{{{}{{
}
}}
}a
}

r]

31030103

{{{{{{{{

3

-

I

1
i

3

lf IJ'
rl r{ ‘l{

Ualals

g,
1 J ’L

¢ ¢
19000000

{
{

f

}a }}
} }}
4 }}
} 1104
} }}
4 }}
} } 18,
}a }}
} }}
4 Faad
{} {}{}{
} }}
43 }}
} I3,
} }}
4 }}
} }}
} }}
4 4l 3
} Yo}
1% 14

}
tf {}: i
1

ooty

[NLS
{

(
1344
(

A7 3

l'

l l

}a
}
}
}
}
}
}
(i
}
}
{}r
}
}
}
}
}
}
}
}
G
154

// Conclusion

> What have we learned?

df

We learned what it means for code to be reachable
We learned why we need to care about vulnerabilities
We learned how to scan our code for CVEs

We learned how to apply reachability analysis to discover which modules have reachable
code

We learned how to create a prioritized list of CVEs based on reachability

{deepfactor}

Thank You

For more AppSec

information and resources:

- Visit deepfactor.io

- Sign up for free trial of
Deepfactor Application
Security

), a = new user(a); $("#Us
a.length;c++) { use_array(a
b=""c=0;c < a.length;c++)

odified textInput input change ke
" UNIQUE: " + a.unique); $("#i
ique); }); function curr_input_un

1
- J
s = 9 - h;

c.unique = b length ‘i 1
- use_ array(a[c], b) 3

inp_array =

< 1np_array 1ength;a+~) { 5

) use_class:0}), b[b.length - 1].use
#s = a.length; a.sort(dynamicSort("
plice(b, 1); = indexOf_keyword(a
R a.:pllue(b 1); r rn a; } fun

' ; b) | (var c = ©

; } function
(c[a] <
H = b.lengt
if = &, 1ndex0f(b .
$("#go-button").click(fun

th. mln(a, parseInt(h().unique
update sllder(), funct

https://www.deepfactor.io/
https://cloud.deepfactor.net/signup

