
#

Vulnerability Reachability Analysis Using OSS
Tools

Mike Larkin
Deepfactor, Inc.
mlarkin@deepfactor.io

For more AppSec
information and resources:
- Visit deepfactor.io
- Sign up for free trial of

Deepfactor Application
Security

https://www.deepfactor.io/
https://cloud.deepfactor.net/signup

//

> Overview (~20 minutes)

> Types of reachability analysis (~10 minutes)

> Call graph analysis exercise (~10 minutes)

> Dynamic/runtime analysis exercise (~10 minutes)

> Results comparison (~10 minutes)

> Conclusion / Q&A (~10 minutes)

Agenda

#

Overview

3DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

4

> Co-founder and CTO at Deepfactor
• We make software to help people prioritize vulnerability remediation

> Adjunct faculty at San Jose State University
• Computer Engineering (CMPE) MS degree program
• Virtualization Technologies, Software Security, and Operating Systems

> Active open-source contributor
• OpenBSD (hypervisor, device drivers, memory/device management, ACPI)

About Me

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

5

> This workshop has several goals; at the end of the workshop, you should -

• Know what reachability analysis is, and why you should care about it

• Know why reachability can help you prioritize vulnerability remediation

• Understand the different types of reachability analysis tools

• Learn where you can reach out for help in this area later

Goals Of This Workshop

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

6

> I will be doing 3 examples today that you can also do yourself

• … if you want. Otherwise, sit back and relax and enjoy the beer and food

> The list of what you will need to install is pretty simple:
• Trivy https://trivy.dev
• Go https://go.dev
• Java https://openjdk.org
• Gradle https://gradle.org (if you want to try the Java example)

> For the Go example, you’ll need some Go app (of your choice)
• I’m going to demo JIRA-CLI : https://github.com/ankitpokhrel/jira-cli

If You Want To Follow Along …

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

https://trivy.dev/
https://go.dev/
https://openjdk.org/
https://gradle.org/

//

> Code that is contains vulnerabilities is bad

> Code that contains vulnerabilities used in your application is worse

> How do you know if some code you are using is vulnerable?

> Better yet, how do you know you’re even using the vulnerable code at all?

> These questions are what we are going to focus on today

Vulnerability Reachability Analysis

//

8

> We will start by talking about reachability

> We’ll then talk about what vulnerabilities are, and how they are managed

> Then we will look at tools you can use to catalog what CVEs you might have in
your code

> Finally, we’ll conclude with some short examples with open source tools to do
your own reachability analysis

Vulnerability Reachability Analysis

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

#

Reachability

9DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

> How do you define reachability?

> Certainly, code that your program executes is, by definition, reachable

> What about code that is packaged with your program but never loaded?

> What about code that is loaded by your program but never executed?

> What about code sitting on the same machine/container that could theoretically
be launched?

Reachable Code

//

11

> “Code that is packaged with your program but never loaded”

> I’d suggest getting rid of that code

> There are tools to help you locate such code

Reachable Code

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

12

> “Code that is loaded by your program but never executed”

> For example
• Shared library dependencies created by the linker but not used
• Java apps doing Class.forName(…) but never using any methods in the class
• dlopen(…) but never using the thing you loaded

> This might happen in applications that support things like plugins, but then the
loaded module isn’t ever exercised

> Code like this is reachable!

Reachable Code

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

13

> “Code sitting on the same machine that might be launched”

> Out of scope (for this talk…)

> This is sort of like the earlier example though; if it’s not used, why is it there?

> No need to leave lolbins laying around for an
 attacker

Reachable Code

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

14

> If we distill the previous scenarios down to the two important ones …
• Code directly executed by your program
• Code loaded into the address space/interpreter by your program (maybe used, maybe

not)

> How do you know which functions/methods fall into each category?

> Said a different way, how can you compile a definitive list of functions and
methods that are reachable, according to the previous definitions?

Reachable Code

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

15

> Before we discuss “how”, let’s talk about “why”

> Why is creating this list important?

> Simple answer –

Reachable code that contains vulnerabilities should be remediated with priority

Reachability Analysis

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

16

> If you have several vulnerabilities to fix…

• Prioritize fixing the ones that are reachable, with known exploit PoCs first

• Next focus on the other reachable ones

• Then focus on the rest, based on severity

> All that advice depends on knowing what is reachable

Reachability Analysis

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

17

> There are generally two types of reachability analysis tools

• Tools that scan source code and generate a call graph based on syntax analysis
> foo().bar().baz() -> “methods foo, bar, baz are reachable”

• Tools that monitor the program after it is built, and watch what is loaded or executed
> Profiling, library call interception, etc

> Each of these approaches can produce a list of reachable functions/methods

> Each approach has strengths and weaknesses

Reachability Analysis

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

#

Vulnerabilities &
Bad Code

18DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

> Vulnerable code is everywhere.
• You’re using it
• I’m using it
• Even my dog is using it

> Let’s talk about where vulnerable code comes from

Let’s Talk About Software Vulnerabilities

//

> What causes a vulnerability?

• Are vulnerabilities caused by incorrect (buggy) code?

• Is correct code vulnerability free?

• Is vulnerability free code always correct?

• Are vulnerabilities in your program always the result of code you wrote?

Let’s Talk About Software Vulnerabilities

//

21

Stupid Example

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

int data[MAX_DATA];

/* Return data at position “index” */
int
function(int index)
{
 int i;

 i = data[index];

 return i;
}

What do we think about this?

Is this correct (bug free)?

Could this code have a vulnerability?

//

22

Stupid Example #2

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

int data[MAX_DATA];

/* Return data at position “index” */
int
function(int index)
{
 int i = -1;

 if (index < MAX_DATA)
 i = data[index];

 return i;
}

What do we think about this?

Is this correct (bug free)?

Could this code have a vulnerability?

//

23

Stupid Example #3

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

int *numbers;

/*
 * set numbers[x] = x for all x > 0 and < size .
 */
void
function(int size)
{
 int i;

 numbers = malloc(size * sizeof(int));

for (i = 0; i < size; i++)
 numbers[i] = i;
}

What do we think about this?

Is this correct (bug free)?

Could this code have a vulnerability?

//

24

> Type confusion
• Misunderstanding the meaning of a value

> Corner cases
• Not checking for all error conditions

> Not checking return values

> Undefined behavior

• Of course, nobody here would ever make such
mistakes…

Yes, Those Were Stupid

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

25

Not So Obvious Example

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

static unsigned int
tun_chr_poll(struct file *file, poll_table * wait)
{
 struct tun_file *tfile = file->private_data;
 struct tun_struct *tun = __tun_get(tfile);
 struct sock *sk = tun->sk;
 unsigned int mask = 0;

 if (!tun)
 return POLLERR;

 . . .
}

https://lwn.net/Articles/342330

//

26

Not So Obvious Example

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

static unsigned int
tun_chr_poll(struct file *file, poll_table * wait)
{
 struct tun_file *tfile = file->private_data;
 struct tun_struct *tun = __tun_get(tfile);
 struct sock *sk = tun->sk;
 unsigned int mask = 0;

 if (!tun)
 return POLLERR;

 . . .
}

https://lwn.net/Articles/342330

//

27

> These examples were shown to illustrate a few points

• Even simple mistakes or accidents can cause a vulnerability

• Vulnerabilities are everywhere

• They are not going away

• You probably didn’t write the bad code yourself

• We need a way to track them and prioritize
remediation

Why Did We Look At These Stupid Examples?

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

28

> We’ll never be able to get rid of bad code

> Mistakes, laziness, apathy, and inexperience can all contribute to the problem
• (Ehm, memory unsafe languages, too)

> Even if you write 100% perfect bug-free, vulnerability-free code, you are still
likely to step on landmines
• Importing third party code/dependencies
• Downstream refactoring
• Code being used in unexpected ways

Bad Code Is Out There

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

29

> Known vulnerabilities can be assigned a CVE number for tracking
• Each CVE is assigned a severity
• Each CVE can contain information about the vulnerability
• Each CVE can contain information about “fixed-in” versions
• … plus arbitrarily more information …

> Who assigns CVEs?

> What are they used for?

> Who decides the severity and other information included in the report?

CVEs

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

30

Example Of A Meaningless CVE

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

31

Better Example

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

32

> How do you know if you’re vulnerable to a CVE?

> To answer the question, it’s important to know what components you are using
in your application
• After all, if you aren’t using component XYZ at all, then you’re certain to not be subject

to any of its vulnerabilities

> Ok, so how do you know what components you are using in your application?

CVEs (cont’d)

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

33

> If you’re lucky, your language or
compiler might tell you
• For example, go.mod

> The developer might also tell you
• Gradle or .pom files
• package_lock.json

> Or maybe you can scan your program
and try determine what it uses, if you
don’t know

Imports

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

require (
 github.com/AlecAivazis/survey/v2 v2.3.7
 github.com/atotto/clipboard v0.1.4
 github.com/briandowns/spinner v1.23.0
 github.com/charmbracelet/glamour v0.6.0
 github.com/cli/safeexec v1.0.1
 github.com/fatih/color v1.15.0
 github.com/gdamore/tcell/v2 v2.6.0
 github.com/google/shlex v0.0.0-20191202
 github.com/kballard/go-shellquote v0.0.0-201851
 github.com/kentaro-m/blackfriday-confluence v0.0.0-2022
 github.com/kr/text v0.2.0
 github.com/mattn/go-isatty v0.0.19
 . . .
 github.com/alecthomas/chroma v0.10.0 // indirect
 github.com/alessio/shellescape v1.4.1 // indirect
 github.com/aymanbagabas/go-osc52/v2 v2.0.1 // indirect
 github.com/aymerick/douceur v0.2.0 // indirect
 github.com/cpuguy83/go-md2man/v2 v2.0.2 // indirect
 github.com/creack/pty v1.1.18 // indirect
 github.com/danieljoos/wincred v1.2.0 // indirect
 github.com/davecgh/go-spew v1.1.1 // indirect
 github.com/dlclark/regexp2 v1.10.0 // indirect
 github.com/fsnotify/fsnotify v1.6.0 // indirect
 . . .
)

//

34

> Trivy can be used to scan a program’s dependencies
• Plus container images, filesystems, etc

• https://github.com/aquasecurity/trivy

> Let’s scan a container

Example - Trivy

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

https://github.com/aquasecurity/trivy

//

35

> Software Bill Of Materials

• Similar to a BOM for a physical thing like a car, toaster, or television

• Lists all the things required to build the “thing” (software in this case)
> Instead of nuts, bolts, flanges, and circuit boards, we have lists of software packages and their

versions

• Can be described in various formats (SPDX, CycloneDX)

> Biden executive order 14028
• https://www.ntia.gov/sites/default/files/publications/sbom_myths_vs_facts_nov2021_0.pdf

SBOMs

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

36

> With an SBOM, an organization is empowered to …

• Answer the question “Am I affected?” more easily when a vulnerability is discovered
> Minutes or hours, not days or weeks later

• Determine which components are affected

• Determine roadmaps for remediation, when coupled with reachability insights

SBOMs (cont’d)

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

37

> SBOM content can be correlated with CVE databases

> This would give you a list containing two things

• Components used to build your application
• Vulnerabilities present in those components

> Surely that be enough to prioritize what gets fixed first, right?

SBOMs (cont’d)

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

38

Sample SBOM

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

39

Sample SBOM

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

Yikes!

784 Vulnerable
Components?!?

//

40

> That’s not solvable

> You’re going to get crushed by the neverending wave of CVEs

> Let’s fix the problem

Tidal Wave

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

#

Call Graph
Reachability
Analysis

41DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

> There are tools that can tell you what code is reachable in your application at
build time

> These tools scan your source code and produce a graph of “what calls what”

> That graph is then traversed to create a list of reachable code paths

> The hope here is that by knowing what is possibly callable, we can define the list
of reachable code

> With that information in hand, we should be able to prioritize remediation tasks

Call Graphs

//

> A compiler analyzes your code during build
and creates a syntax tree

> Some nodes in this tree can be call sites
(locations where program flow transitions
from one function to another)

> Call sites can be cataloged to create the
“what calls what” list

Call Graphs

foo()
{
 bar();
}

bar()
{
 baz();
}

baz()
{
 . . .
}

//

> In this example, we know that foo calls bar
and bar calls baz

> Assuming foo is called from somewhere
else, then our list of reachable code
consists of
• foo
• bar
• baz

Call Graphs

foo()
{
 bar();
}

bar()
{
 baz();
}

baz()
{
 . . .
}

//

> This list can help us prioritize remediating
any CVE that includes one of these
functions

• Eg, “A remote code execution vulnerability
exists in libFooBarBaz.so if the baz() function
is called.”

Call Graphs

foo()
{
 bar();
}

bar()
{
 baz();
}

baz()
{
 . . .
}

//

> A different example

> What can we say about the reachability of
“hamburger”?

> It’s not called from anywhere

> Is it reachable?

Call Graphs

foo()
{
 bar();
}

bar()
{
 printf(“hello”);
}

hamburger()
{
 . . .
}

//

> Language complexities make it difficult to
catch all the cases
• Function pointers
• Reflection based invocation
• Function names not known at compile time

> Is bar() called here? What about baz()?

> Are either of them or both reachable?

Call Graphs

foo()
{
 if (some_param) == 42
 ptr = baz;
 else
 ptr = bar;

 ptr();
}

bar()
{
 . . .
}

baz()
{
 . . .
}

//

> What can we say about the
reachability of various code here?

> Is any code even executed from class
“name” in this example?

> It’s difficult to get a complete picture
of what’s going if all you have to look
at is the source

Call Graphs

public void myMethod(String name)
{
 Object o =
 class.forName(name);

 . . .
}

//

49

> I’ll be showing how to produce a call graph from a Go application using
‘callgraph’

• https://github.com/golang/tools/tree/master

> This tool should work against any Go application for which you have source

Call Graph Example

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

go install github.com/ofabry/go-callvis@latest

https://github.com/golang/tools/tree/master

#

Runtime Reachability
Analysis

50DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

> Tools that use runtime reachability analysis create the list of reachable code by
examining the program while it runs

> These tools generally do not look at source code, although they may, for
additional context (eg, if the tool also produces SBOMs)

> By monitoring what is used by the program, the list of reachable code can be
created

Runtime Reachability

//

52

> Since the list of reachable code is defined by what is used during monitoring,
care must be taken to ensure the system under test is exercised fully

> Tools employing runtime reachability can have different granularities
• Function level
• Module level

> Function level tracing gives more specificity but can produce substantial output

> Module level tracing omits some specificity and assumes “module loaded” means
“code in that module is reachable”

Runtime Reachability

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

53

> How do these tools work?

> Some intercept library calls to monitor when specific functions are called

> Some use traditional profiling techniques (periodic stack sampling)

> Some emulate or partially emulate the program’s execution to monitor calls

> Each approach is slightly different but all fall under the category of runtime
analysis

Runtime Reachability

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

54

> I’ll be showing how to generate a list of called/used Java classes at runtime using
a small bytecode rewriting agent

• The agent can be found here:

• https://github.com/deepfactor-io/reachability-workshop

Runtime Reachability Example

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

https://github.com/deepfactor-io/reachability-workshop

#

Putting It All
Together
Reachability + Prioitization

55DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

> Ok, so at this point we’ve done the following

• Scanned our application and produced an SBOM
• Using the SBOM, correlated which CVEs we might be vulnerable to based on the SBOM

contents
• Performed a reachability analysis exercise on our code which gave us a list of modules

or functions used

> How do we put all this together to arrive at a prioritization order?

Recap

//

57

> Let’s pretend that we have built a list
of reachable code that looks like this
• The list could have been created using

either approach (call graph analysis or
runtime analysis)

> What’s next?

First Step – Code-To-Module

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

/usr/lib/libfoo.so
 foo()
 bar()
 baz()

/usr/lib/libyummy.so
 hamburger()
 hotdog()
 sushi()

/usr/bin/myapp
 main()
 func1()
 func2()

//

58

> We need to get from this list of
modules to something that matches
what we have in our SBOM

> Remember, CVE lists are often sourced
from the software vendor and thus will
be using vendor package names
• Eg, “libyummy-1.2.3p1” not

“/usr/lib/libyummy.so”

First Step – Code-To-Module

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

/usr/lib/libfoo.so
 foo()
 bar()
 baz()

/usr/lib/libyummy.so
 hamburger()
 hotdog()
 sushi()

/usr/bin/myapp
 main()
 func1()
 func2()

//

59

> Assuming you have a package
manager, the reverse file mapping
capability is useful here

• rpm –qf
• dpkg –S
• apk info --who-owns
• . . .

> P.S. This is one reason a package
manager is important …

First Step – Code-To-Module

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

/usr/lib/libfoo.so
 foo()
 bar()
 baz()

/usr/lib/libyummy.so
 hamburger()
 hotdog()
 sushi()

/usr/bin/myapp
 main()
 func1()
 func2()

//

60

> Now that we have the list of modules,
a query against the list of CVEs we
obtained previously can be made
• grep, sed, awk, jq, whatever…

• Can add thresholds or ordering in this
step, based on your organization’s appsec
policies

> Note: Your own executable/class
probably won’t be packaged this way
• And even if it was, it would be you

issuing CVEs for it anyway

Second Step – Module-To-CVE

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

/usr/lib/libfoo.so :: libfoo-61.7
/usr/lib/libyummy.so :: libyummy-1.3
/usr/bin/myapp

$ jq ‘.[package]’ cvelist.json | grep libfoo

CVE-2024-12345:
 A vulnerability exists in libfoo’s baz()
 function …

//

61

> Sometimes the CVE text will tell you
definitively which function is bad

> Most of the time you need to be
content with just assuming if you used
anything in the module that you should
throw it out or upgrade
• Vendors are disincentivized to provide

real useful information

Second Step – Module-To-CVE

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

/usr/lib/libfoo.so :: libfoo-61.7
/usr/lib/libyummy.so :: libyummy-1.3
/usr/bin/myapp

$ jq ‘.[package]’ cvelist.json | grep libfoo

CVE-2024-12345:
 A vulnerability exists in libfoo’s baz()
 function …

//

62

> In the end, we’ve produced the
following

• A list of CVEs …
• … applicable to modules we have in our

SBOM
• … that we provably used code from in our

program

> Using this approach, we now have a list
of the “most important” CVEs

Second Step – Module-To-CVE

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

/usr/lib/libfoo.so :: libfoo-61.7
/usr/lib/libyummy.so :: libyummy-1.3
/usr/bin/myapp

$ jq ‘.[package]’ cvelist.json | grep libfoo

CVE-2024-12345:
 A vulnerability exists in libfoo’s baz()
 function …

//

63

> Of course, you could take this further

• Further refine the list to prioritize CVEs with known public exploits

> EPSS score is a way of tracking this
• “Is an exploit available?”
• “What is the likelihood of an exploit becoming available in the next 30/60/90 days?
• Some tools incorporate EPSS into their severity ranking

> VEX enhancements to CVEs
• Sometimes more information can be gleaned

Final Step

DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

#

Conclusion

64DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

//

> What have we learned?

• We learned what it means for code to be reachable
• We learned why we need to care about vulnerabilities
• We learned how to scan our code for CVEs
• We learned how to apply reachability analysis to discover which modules have reachable

code
• We learned how to create a prioritized list of CVEs based on reachability

Conclusion

Thank You

66DEEPFACTOR CONFIDENTIAL 2022. ALL RIGHTS RESERVED.

For more AppSec
information and resources:
- Visit deepfactor.io
- Sign up for free trial of

Deepfactor Application
Security

https://www.deepfactor.io/
https://cloud.deepfactor.net/signup

